#18447: Implement dual-quasi-Schur basis in NCSF
-------------------------------------+-------------------------------------
       Reporter:  zabrocki           |        Owner:
           Type:  enhancement        |       Status:  new
       Priority:  minor              |    Milestone:  sage-6.7
      Component:  combinatorics      |   Resolution:
       Keywords:  ncsf, qsym,        |    Merged in:
  quasiSchur                         |    Reviewers:
        Authors:                     |  Work issues:
Report Upstream:  N/A                |       Commit:
         Branch:                     |  b987e7ec4a6b0f546481673d193a84d5e42bcab1
  public/combinat/zabrocki/ncsf_quasi_schur_basis/18447|     Stopgaps:
   Dependencies:  #18415             |
-------------------------------------+-------------------------------------

Comment (by zabrocki):

 Time tests on branch 943f817
 {{{
 sage: timeit('QS[2,2,2,1].coproduct()',number=1,repeat=1)
 1 loops, best of 1: 6.69 s per loop
 sage: timeit('QS[2,2,2,2].coproduct()',number=1,repeat=1)
 1 loops, best of 1: 56.2 s per loop
 sage: timeit('QS[1,2,1]*QS[2,2]',number=1,repeat=1)
 1 loops, best of 1: 23.5 s per loop
 sage: timeit('QS[2,2,2].internal_coproduct()',number=1,repeat=1)
 1 loops, best of 1: 5.23 s per loop
 }}}
 Time tests on current branch
 {{{
 sage: timeit('QS[2,2,2,1].coproduct()',number=1,repeat=1)
 1 loops, best of 1: 5.33 s per loop
 sage: timeit('QS[2,2,2,2].coproduct()',number=1,repeat=1)
 1 loops, best of 1: 27.8 s per loop
 sage: timeit('QS[1,2,1]*QS[2,2]',number=1,repeat=1)
 1 loops, best of 1: 18.1 s per loop
 sage: timeit('QS[2,2,2].internal_coproduct()',number=1,repeat=1)
 1 loops, best of 1: 42.5 s per loop
 }}}
 The last example is perhaps telling.  It takes advantage of the cache more
 than the other calculations and in the new branch the conversion from the
 monomial basis is not cached.  On branch 943f817, the whole transition
 matrix at a given degree is calculated at the same time (in this case n=6)
 and this is used as many times as needed in order to convert to the QS
 basis.

--
Ticket URL: <http://trac.sagemath.org/ticket/18447#comment:14>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to