#6699: [with spkg; needs review] Update to Maxima 5.19.0 (particularly important
for Solaris support).
----------------------+-----------------------------------------------------
 Reporter:  drkirkby  |       Owner:  mabshoff    
     Type:  defect    |      Status:  new         
 Priority:  major     |   Milestone:  sage-4.1.2  
Component:  packages  |    Keywords:              
 Reviewer:            |      Author:  David Kirkby
   Merged:            |  
----------------------+-----------------------------------------------------

Comment(by awebb):

 Starting from sage 4.1.1, I installed ecl-9.8.3.spkg and
 maxima-5.19.0.spkg. The following errors occurred.

 {{{
 sage -t -long -optional "devel/sage-myver/sage/interfaces/maxima.py"
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 116:
     sage: a.expand()
 Expected:
     29*sqrt(2)+41
 Got:
     3*2^(7/2)+5*sqrt(2)+41
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 227:
     sage: A.eigenvectors()
 Expected:
     [[[0,4],[3,1]],[1,0,0,-4],[0,1,0,-2],[0,0,1,-4/3],[1,2,3,4]]
 Got:
     [[[0,4],[3,1]],[[[1,0,0,-4],[0,1,0,-2],[0,0,1,-4/3]],[[1,2,3,4]]]]
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 275:
     sage: maxima("laplace(diff(x(t),t),t,s)")
 Expected:
     s*?%laplace(x(t),t,s)-x(0)
 Got:
     s*'laplace(x(t),t,s)-x(0)
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 280:
     sage: maxima("laplace(diff(x(t),t,2),t,s)")
 Expected:
     -?%at('diff(x(t),t,1),t=0)+s^2*?%laplace(x(t),t,s)-x(0)*s
 Got:
     -?%at('diff(x(t),t,1),t=0)+s^2*'laplace(x(t),t,s)-x(0)*s
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 426:
     sage: t.limit(Ax=0,dir='above')
 Expected:
     Traceback (most recent call last):
     ...
     TypeError: Computation failed since Maxima requested additional
 constraints (try the command 'assume(By^2+Bx^2>0)' before integral or
 limit evaluation, for example):
     Is By^2+Bx^2  positive or zero?
 Got:
     0
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 824:
     sage: maxima._command_runner('describe', 'gcd')
 Expected:
     -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
     ...
 Got:
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/defsystem.fas"
     ;;; Loading #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/cmp.fas"
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/sysfun.lsp"
     <BLANKLINE>
      -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
          Returns the greatest common divisor of <p_1> and <p_2>.  The flag
          `gcd' determines which algorithm is employed.  Setting `gcd' to
          `ez', `subres', `red', or `spmod' selects the `ezgcd',
          subresultant `prs', reduced, or modular algorithm, respectively.
          If `gcd' `false' then `gcd (<p_1>, <p_2>, <x>)' always returns 1
          for all <x>.  Many functions (e.g.  `ratsimp', `factor', etc.)
          cause gcd's to be taken implicitly.  For homogeneous polynomials
          it is recommended that `gcd' equal to `subres' be used.  To take
          the gcd when an algebraic is present, e.g., `gcd (<x>^2 -
          2*sqrt(2)*<x> + 2, <x> - sqrt(2))', `algebraic' must be `true'
 and
          `gcd' must not be `ez'.
     <BLANKLINE>
          The `gcd' flag, default: `spmod', if `false' will also prevent
 the
          greatest common divisor from being taken when expressions are
          converted to canonical rational expression (CRE) form.  This will
          sometimes speed the calculation if gcds are not required.
     <BLANKLINE>
     <BLANKLINE>
       There are also some inexact matches for `gcd'.
       Try `?? gcd' to see them.
     <BLANKLINE>
                                          true
     <BLANKLINE>
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 845:
     sage: maxima.help('gcd')
 Expected:
     -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
     ...
 Got:
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/defsystem.fas"
     ;;; Loading #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/cmp.fas"
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/sysfun.lsp"
     <BLANKLINE>
      -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
          Returns the greatest common divisor of <p_1> and <p_2>.  The flag
          `gcd' determines which algorithm is employed.  Setting `gcd' to
          `ez', `subres', `red', or `spmod' selects the `ezgcd',
          subresultant `prs', reduced, or modular algorithm, respectively.
          If `gcd' `false' then `gcd (<p_1>, <p_2>, <x>)' always returns 1
          for all <x>.  Many functions (e.g.  `ratsimp', `factor', etc.)
          cause gcd's to be taken implicitly.  For homogeneous polynomials
          it is recommended that `gcd' equal to `subres' be used.  To take
          the gcd when an algebraic is present, e.g., `gcd (<x>^2 -
          2*sqrt(2)*<x> + 2, <x> - sqrt(2))', `algebraic' must be `true'
 and
          `gcd' must not be `ez'.
     <BLANKLINE>
          The `gcd' flag, default: `spmod', if `false' will also prevent
 the
          greatest common divisor from being taken when expressions are
          converted to canonical rational expression (CRE) form.  This will
          sometimes speed the calculation if gcds are not required.
     <BLANKLINE>
     <BLANKLINE>
       There are also some inexact matches for `gcd'.
       Try `?? gcd' to see them.
     <BLANKLINE>
                                          true
     <BLANKLINE>
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 855:
     sage: maxima.example('arrays')
 Expected:
     a[n]:=n*a[n-1]
                                     a  := n a
                                      n       n - 1
     a[0]:1
     a[5]
                                           120
     a[n]:=n
     a[6]
                                            6
     a[4]
                                           24
                                          done
 Got:
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/defsystem.fas"
     ;;; Loading #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/cmp.fas"
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/sysfun.lsp"
     a[n]:=n*a[n-1]
                                     a  := n a
                                      n       n - 1
     a[0]:1
     a[5]
                                           120
     a[n]:=n
     a[6]
                                            6
     a[4]
                                           24
                                          done
     <BLANKLINE>
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 892:
     sage: sorted(maxima.completions('gc', verbose=False))
 Expected:
     ['gc', 'gcd', 'gcdex', 'gcfactor', 'gcprint', 'gctime']
 Got:
     ['propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)']
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 907:
     sage: sorted(maxima._commands(verbose=False))
 Expected:
     ['Alpha',
      'Beta',
      ...
      'zunderflow']
 Got:
     ['propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)',
 'propos:Theargumenthastobeastring.--
 anerror.Todebugthistrydebugmode(true)', 'propos:Theargumenthastobeastring.
 --anerror.Todebugthistrydebugmode(true)']
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 926:
     sage: 'gcd' in t
 Expected:
     True
 Got:
     False
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 1169:
     sage: maxima.version()
 Expected:
     '5.16.3'
 Got:
     'Loading'
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 1994:
     sage: f.numer()         # I wonder how to get a real number (~1.463)??
 Expected:
     -.8862269254527579*%i*erf(%i)
 Got:
     1.462651745907182
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 2174:
     sage: 'gcd' in m.trait_names()
 Expected:
     True
 Got:
     False
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 2274:
     sage: m.gcd._sage_doc_()
 Expected:
     -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
     ...
 Got:
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/defsystem.fas"
     ;;; Loading #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/cmp.fas"
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/sysfun.lsp"
     <BLANKLINE>
      -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
          Returns the greatest common divisor of <p_1> and <p_2>.  The flag
          `gcd' determines which algorithm is employed.  Setting `gcd' to
          `ez', `subres', `red', or `spmod' selects the `ezgcd',
          subresultant `prs', reduced, or modular algorithm, respectively.
          If `gcd' `false' then `gcd (<p_1>, <p_2>, <x>)' always returns 1
          for all <x>.  Many functions (e.g.  `ratsimp', `factor', etc.)
          cause gcd's to be taken implicitly.  For homogeneous polynomials
          it is recommended that `gcd' equal to `subres' be used.  To take
          the gcd when an algebraic is present, e.g., `gcd (<x>^2 -
          2*sqrt(2)*<x> + 2, <x> - sqrt(2))', `algebraic' must be `true'
 and
          `gcd' must not be `ez'.
     <BLANKLINE>
          The `gcd' flag, default: `spmod', if `false' will also prevent
 the
          greatest common divisor from being taken when expressions are
          converted to canonical rational expression (CRE) form.  This will
          sometimes speed the calculation if gcds are not required.
     <BLANKLINE>
     <BLANKLINE>
       There are also some inexact matches for `gcd'.
       Try `?? gcd' to see them.
     <BLANKLINE>
                                          true
     <BLANKLINE>
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 2285:
     sage: maxima.gcd._sage_doc_()
 Expected:
     -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
     ...
 Got:
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/defsystem.fas"
     ;;; Loading #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/cmp.fas"
     ;;; Loading
 #P"/home/adamwebb/local/sage/local/lib/ecl-9.8.3/sysfun.lsp"
     <BLANKLINE>
      -- Function: gcd (<p_1>, <p_2>, <x_1>, ...)
          Returns the greatest common divisor of <p_1> and <p_2>.  The flag
          `gcd' determines which algorithm is employed.  Setting `gcd' to
          `ez', `subres', `red', or `spmod' selects the `ezgcd',
          subresultant `prs', reduced, or modular algorithm, respectively.
          If `gcd' `false' then `gcd (<p_1>, <p_2>, <x>)' always returns 1
          for all <x>.  Many functions (e.g.  `ratsimp', `factor', etc.)
          cause gcd's to be taken implicitly.  For homogeneous polynomials
          it is recommended that `gcd' equal to `subres' be used.  To take
          the gcd when an algebraic is present, e.g., `gcd (<x>^2 -
          2*sqrt(2)*<x> + 2, <x> - sqrt(2))', `algebraic' must be `true'
 and
          `gcd' must not be `ez'.
     <BLANKLINE>
          The `gcd' flag, default: `spmod', if `false' will also prevent
 the
          greatest common divisor from being taken when expressions are
          converted to canonical rational expression (CRE) form.  This will
          sometimes speed the calculation if gcds are not required.
     <BLANKLINE>
     <BLANKLINE>
       There are also some inexact matches for `gcd'.
       Try `?? gcd' to see them.
     <BLANKLINE>
                                          true
     <BLANKLINE>
 **********************************************************************
 File "/home/adamwebb/local/sage/devel/sage-
 myver/sage/interfaces/maxima.py", line 2667:
     sage: maxima_version()
 Expected:
     '5.16.3'
 Got:
     'Loading'
 **********************************************************************
 13 items had failures:
    5 of  95 in __main__.example_0
    1 of   3 in __main__.example_12
    1 of   3 in __main__.example_13
    1 of   3 in __main__.example_14
    1 of   3 in __main__.example_16
    1 of   3 in __main__.example_17
    1 of   5 in __main__.example_18
    1 of   3 in __main__.example_29
    1 of  10 in __main__.example_59
    1 of   4 in __main__.example_68
    1 of   4 in __main__.example_72
    1 of   3 in __main__.example_73
    1 of   4 in __main__.example_93
 ***Test Failed*** 17 failures.
 For whitespace errors, see the file
 /home/adamwebb/local/sage/tmp/.doctest_maxima.py
          [17.9 s]
 exit code: 1024

 ----------------------------------------------------------------------
 The following tests failed:


         sage -t -long -optional "devel/sage-
 myver/sage/interfaces/maxima.py"
 Total time for all tests: 17.9 seconds
 }}}

 It appears that the output from maxima has changed in a number of cases
 and is returning more comments and the like. I don't know if this is the
 correct/new behaviour of maxima.

 Adam

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6699#comment:3>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to