#6750: [with spkg, needs review] New version of optional Group Cohomology spkg
-------------------------------+--------------------------------------------
Reporter: SimonKing | Owner: SimonKing
Type: enhancement | Status: assigned
Priority: major | Milestone:
Component: optional packages | Keywords: cohomology ring p-group
Reviewer: | Author: Simon King
Merged: |
-------------------------------+--------------------------------------------
Changes (by SimonKing):
* cc: m...@… (added)
Comment:
I'd like to add Mikael Vejdemo Johansson to the Cc list, hope he doesn't
mind.
I fixed the bug that was uncovered when trying to do some computations
that Mika asked me to do.
The spkg is updated and passes doc tests on sage.math, so, "needs review"
(and "still needs examples"...).
One of the examples that failed previously is added as (long) doc test.
Now, the following works (but takes a while):
{{{
sage: from pGroupCohomology import CohomologyRing
sage: tmp_root = tmp_filename()
sage: CohomologyRing.set_user_db(tmp_root)
sage: H = CohomologyRing(16,2)
sage: H.make()
sage: H.massey_products(H.3*H.1,H.3,H.3*H.1)
set([0, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_1*c_2_2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_1^2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_1*c_2_2*c_1_0*c_1_1+c_2_1^2*c_1_0*c_1_1, a 6-Cochain in
H^*(SmallGroup(16,2); GF(2))])
sage: H.massey_products(H.3*H.2,H.3,H.3*H.1)
set([c_2_1^2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_1*c_2_2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1+c_2_1*c_2_2*c_1_0*c_1_1+c_2_1^2*c_1_0*c_1_1, a
6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1+c_2_1^2*c_1_0*c_1_1, a 6-Cochain in
H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1+c_2_1*c_2_2*c_1_0*c_1_1, a 6-Cochain in
H^*(SmallGroup(16,2); GF(2)),
0, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_1*c_2_2*c_1_0*c_1_1+c_2_1^2*c_1_0*c_1_1, a 6-Cochain in
H^*(SmallGroup(16,2); GF(2))])
sage: H.massey_products(H.4*H.2,H.4,H.4*H.2)
set([0, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2); GF(2)),
c_2_2^2*c_1_0*c_1_1+c_2_1*c_2_2*c_1_0*c_1_1, a 6-Cochain in
H^*(SmallGroup(16,2); GF(2)),
c_2_1*c_2_2*c_1_0*c_1_1, a 6-Cochain in H^*(SmallGroup(16,2);
GF(2))])
}}}
Mika said that C4xC4 (={{{SmallGroup(16,2)}}}) is particularly interesting
to him. But I don't know what results would be expected.
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6750#comment:9>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to
[email protected]
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---