#6750: [with spkg, needs review] New version of optional Group Cohomology spkg
-------------------------------+--------------------------------------------
 Reporter:  SimonKing          |       Owner:  SimonKing              
     Type:  enhancement        |      Status:  assigned               
 Priority:  major              |   Milestone:                         
Component:  optional packages  |    Keywords:  cohomology ring p-group
 Reviewer:                     |      Author:  Simon King             
   Merged:                     |  
-------------------------------+--------------------------------------------

Comment(by SimonKing):

 The problem is fixed and the package is updated at
 
http://sage.math.washington.edu/home/SimonKing/Cohomology/p_group_cohomology-1.1.spkg

 Technical reason for the problem was:
 If Y is the composition of two Yoneda cochains Y1, Y2, I thought that for
 computing higher terms of the composition it suffices to compose the
 lowest terms and then lift Y, i.e., extend a certain (anti-)commutative
 diagram. This is in fact possible if one just wants to compute the cup
 product. But for computing higher Massey products, one must lift Y1, Y2
 sufficiently, and then compose the higher terms.

 I extended the documentation, and thanks to the help of David Green I am
 now able to present a non-trivial example, explicitly verifying D. Kraines
 result for a cocycle of degree 3 of the Extraspecial 3-group of order 27
 and exponent 3. It is also part of the doc tests.

 I think that the example indicates that my implementation makes sense, so,
 I hope that a positive review (after installation+doctests on a couple of
 platforms) is now possible.

 The example works as follows.

 __First step:__ Study elementary abelian groups.

 {{{
 sage: tmp_root = tmp_filename()
 sage: from pGroupCohomology import CohomologyRing
 sage: CohomologyRing.set_user_db(tmp_root)
 sage: H = CohomologyRing.user_db(9,2)
 sage: H.make()
 sage: H.gens()
 [1,
  c_2_1, a 2-Cochain in H^*(SmallGroup(9,2); GF(3)),
  c_2_2, a 2-Cochain in H^*(SmallGroup(9,2); GF(3)),
  a_1_0, a 1-Cochain in H^*(SmallGroup(9,2); GF(3)),
  a_1_1, a 1-Cochain in H^*(SmallGroup(9,2); GF(3))]
 }}}

 Of course, there is a sign involved when choosing the generators, but in
 fact {{{c_2_1, c_2_2}}} are the Bocksteins of {{{a_1_0, a_1_1}}}. So, the
 following agrees with Kraines' theorem:
 {{{
 sage: H.cochain_to_polynomial(H.3.massey_power())
 -c_2_1, a 2-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: H.cochain_to_polynomial(H.4.massey_power())
 -c_2_2, a 2-Cochain in H^*(SmallGroup(9,2); GF(3))
 }}}

 Fortunately the cohomology rings of elementary abelian groups are very
 simple, and thus allow for a direct computation of Steenrod powers and
 Bocksteins in higher degree. We consider C = a_1_0*c_2_1_. By Cartan
 formula and since P^0^ is the identity, we have
   P^1^(C) = P^1^(a_1_0) c_2_1 + a_1_0 P(c_2_1).

 Since P^1^ vanishes in degree one and acts as the p-th power in degree
 two, we get
   P^1^(C) = a_1_0 c_2_1^3^.

 Applying the Bockstein operator \beta, we get
   \beta P^1^(C) = c_2_1^4^,
 since \beta(c_2_1) = \beta^2^(a_1_0) = 0 and since \beta(xy)=\beta(x)y +
 (-1)^deg x^x\beta(y).

 Hence, according to Kraines, the first restricted Massey power of C should
 be
   <C; 1> = - c_2_1^4^.

 And indeed:
 {{{
 sage: (H.1*H.3).massey_power()
 <(c_2_1)*(a_1_0); 1>, a 8-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: H.cochain_to_polynomial(_)
 -c_2_1^4, a 8-Cochain in H^*(SmallGroup(9,2); GF(3))
 }}}

 __Second Step:__ Apply Kraines formula to the restrictions to maximal
 elementary abelian subgroups

 This is the cohomology ring of the extraspecial 3-group of order 27 and
 exponent 3:
 {{{
 sage: H = CohomologyRing.user_db(27,3)
 sage: H.make()
 }}}

 We want to compute the 1st Massey power of a generator in degree 3:
 {{{
 sage: C = H.8
 sage: C
 a_3_4, a 3-Cochain in H^*(E27; GF(3))
 }}}

 There are 4 maximal elementary abelian subgroups (all of order 9). We get
 the restriction maps and compute the restrictions of C:
 {{{
 sage: r1 = H.restriction_maps()[2][1]
 sage: r1
 Induced homomorphism of degree 0 from H^*(E27; GF(3)) to
 H^*(SmallGroup(9,2); GF(3))
 sage: r2 = H.restriction_maps()[3][1]
 sage: r3 = H.restriction_maps()[4][1]
 sage: r4 = H.restriction_maps()[5][1]
 sage: U = r1.codomain()
 sage: U.cochain_to_polynomial(r1(C))
 -c_2_2*a_1_0+c_2_1*a_1_1, a 3-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r2(C))
 0, a 3-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r3(C))
 -c_2_2*a_1_0+c_2_1*a_1_1, a 3-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r4(C))
 c_2_2*a_1_1+c_2_2*a_1_0-c_2_1*a_1_1, a 3-Cochain in H^*(SmallGroup(9,2);
 GF(3))
 }}}

 Hence, after computing Bockstein and Steenrod power in the maximal
 elementary abelian subgroups as above, and since Steenrod power and
 Bockstein commute with restriction maps, the theorem of Kraines tells us
 that <C; 1> should restrict to
   * c_2_1 c_2_2^3^ - c_2_1^3^c_2_2,
   * 0,
   * c_2_1 c_2_2^3^ - c_2_1^3^c_2_2, and
   * -c_2_2^4^ - c_2_1 c_2_2^3^ + c_2_1^3^c_2_2.

 This is indeed the case:
 {{{
 sage: CP = C.massey_power()
 sage: U.cochain_to_polynomial(r1(CP))
 c_2_1*c_2_2^3-c_2_1^3*c_2_2, a 8-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r2(CP))
 0, a 8-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r3(CP))
 c_2_1*c_2_2^3-c_2_1^3*c_2_2, a 8-Cochain in H^*(SmallGroup(9,2); GF(3))
 sage: U.cochain_to_polynomial(r4(CP))
 -c_2_2^4-c_2_1*c_2_2^3+c_2_1^3*c_2_2, a 8-Cochain in H^*(SmallGroup(9,2);
 GF(3))
 }}}

 It is known that for this group, a cocycle is uniquely determined by its
 restrictions to the maximal elementary abelian subgroups. Hence, we have
 verified the computation of the first restricted Massey power of C.

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/6750#comment:11>
Sage <http://sagemath.org/>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to