#18798: Jucys-Murphy Elements for Brauer Algebra
-------------------------------------+-------------------------------------
       Reporter:  ghseeli            |        Owner:
           Type:  enhancement        |       Status:  needs_review
       Priority:  minor              |    Milestone:  sage-6.10
      Component:  algebra            |   Resolution:
       Keywords:  days65, partition  |    Merged in:
  algebra, diagram algebra, jucys-   |    Reviewers:
  murphy                             |  Work issues:
        Authors:  George H.          |       Commit:
  Seelinger                          |  15aa5a132c33abfa833a6f5a8974bcf93b3776b0
Report Upstream:  N/A                |     Stopgaps:
         Branch:                     |
  u/ghseeli/jucys_murphy_elements_for_brauer_algebra|
   Dependencies:  #18762             |
-------------------------------------+-------------------------------------

Comment (by tscrim):

 A couple of suggestions:
 {{{#!diff
      def jucys_murphy(self, j):
          r"""
 -        Return a generalized Jucys-Murphy elements for the Brauer
 algebra.
 -        These are outlined in [Naz]_.
 +        Return the ``j``-th generalized Jucys-Murphy element of ``self``.

 +        Could you give a more detailed description of how the elements
 are defined?
 +
          REFERENCES:

          .. [Naz] Maxim Nazarov, Young's Orthogonal Form for Brauer's
 Centralizer
 -               Algebra. Journal of Algebra 182 (1996), 664--693.
 +           Algebra. Journal of Algebra 182 (1996), 664--693.

          EXAMPLES:

              sage: z = var('z')
              sage: B = BrauerAlgebra(3,z)
              sage: B.jucys_murphy(1)
              1/2*z - 1/2
              sage: B.jucys_murphy(3)
 -            -B{{-3, -2}, {-1, 1}, {2, 3}} - B{{-3, -1}, {-2, 2}, {1, 3}}
 + B{{-3, 1}, {-2, 2}, {-1, 3}} + B{{-3, 2}, {-2, 3}, {-1, 1}} +
 (1/2*z-1/2)*B{{-3, 3}, {-2, 2}, {-1, 1}}
 +            -B{{-3, -2}, {-1, 1}, {2, 3}} - B{{-3, -1}, {-2, 2}, {1, 3}}
 +            + B{{-3, 1}, {-2, 2}, {-1, 3}} + B{{-3, 2}, {-2, 3}, {-1, 1}}
 +            + (1/2*z-1/2)*B{{-3, 3}, {-2, 2}, {-1, 1}}
          """
 -        B = self
 -        return (B._q-1)/2 + sum(B([[i,-j],[j,-i]]) - B([[i,j],[-i,-j]])
 for i in range(1,j))
 +        I = self._indices
 +        one = self.base_ring().one()
 +        return ((self._q-1)/2
 +                + self._from_dict({I([[i,-j],[j,-i]]): one for i in
 range(1,j)}, remove_zeros=False)
 +                - self._from_dict({I([[i,j],[-i,-j]]): one for i in
 range(1,j)}, remove_zeros=False))
 }}}
 Do you think we should also make this a cached method? What about when `j
 > n`, what happens then (or is it even defined)?

--
Ticket URL: <http://trac.sagemath.org/ticket/18798#comment:11>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to