#19969: asymptotic expansion generator: singularity analysis (log-type)
-------------------------------------+-------------------------------------
       Reporter:  behackl            |        Owner:
           Type:  enhancement        |       Status:  needs_review
       Priority:  major              |    Milestone:  sage-7.1
      Component:  asymptotic         |   Resolution:
  expansions                         |    Merged in:
       Keywords:                     |    Reviewers:  Clemens Heuberger,
        Authors:  Benjamin Hackl     |  Daniel Krenn
Report Upstream:  N/A                |  Work issues:
         Branch:  u/dkrenn/asy/SA-   |       Commit:
  generator-log                      |  456d8c383b55ab6ebbbd473370278180177326be
   Dependencies:  #19532, #19993,    |     Stopgaps:
  #20043                             |
-------------------------------------+-------------------------------------

Comment (by cheuberg):

 Replying to [comment:13 dkrenn]:
 > I'm in the middle of the review.
 >
 > I didn't investigate further, but the (correct) result of
 > {{{
 > sage: asymptotic_expansions.SingularityAnalysis('n',
 > ....:     alpha=0, beta=2, precision=23).subs(n=n-2)
 > }}}
 > does not seem to depend on the precision anymore for values at least 13.

 What is `n`? Could it be that it is the generator of an asymptotic ring
 with lower default precision?

 I cannot reproduce the problem:
 {{{
 result = {}
 for p in range(1, 20):
     a = asymptotic_expansions.SingularityAnalysis('n', alpha=0, beta=2,
 precision=p)
     n = a.parent().gen()
     result[p] = a.subs(n=n-2)
     error = result[p] - result[p].exact_part()
     if p >= 2:
         print p, error, result[p] - result[p-1]
 }}}
 yields
 {{{
 2 O(n^(-1)) O(n^(-1)*log(n))
 3 O(n^(-2)*log(n)^2) O(n^(-1))
 4 O(n^(-2)*log(n)) O(n^(-2)*log(n)^2)
 5 O(n^(-2)) O(n^(-2)*log(n))
 6 O(n^(-3)*log(n)^2) O(n^(-2))
 7 O(n^(-3)*log(n)) O(n^(-3)*log(n)^2)
 8 O(n^(-3)) O(n^(-3)*log(n))
 9 O(n^(-4)*log(n)^2) O(n^(-3))
 10 O(n^(-4)*log(n)) O(n^(-4)*log(n)^2)
 11 O(n^(-4)) O(n^(-4)*log(n))
 12 O(n^(-5)*log(n)^2) O(n^(-4))
 13 O(n^(-5)*log(n)) O(n^(-5)*log(n)^2)
 14 O(n^(-5)) O(n^(-5)*log(n))
 15 O(n^(-6)*log(n)^2) O(n^(-5))
 16 O(n^(-6)*log(n)) O(n^(-6)*log(n)^2)
 17 O(n^(-6)) O(n^(-6)*log(n))
 18 O(n^(-7)*log(n)^2) O(n^(-6))
 19 O(n^(-7)*log(n)) O(n^(-7)*log(n)^2)
 }}}
 so the result gets better in every iteration. Due to cancellations, some
 of the coefficients are not present ...

--
Ticket URL: <http://trac.sagemath.org/ticket/19969#comment:16>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to