#10519: analytic combinatorics: new code for computing asymptotics for 
multivariate
generating functions
-------------------------------------+-------------------------------------
       Reporter:  araichev           |        Owner:  sage-combinat
           Type:  enhancement        |       Status:  needs_work
       Priority:  major              |    Milestone:  sage-7.1
      Component:  combinatorics      |   Resolution:
       Keywords:  analytic           |    Merged in:
  combinatorics, multivariate        |    Reviewers:  Daniel Krenn, David
  generating functions, asymptotics  |  Loeffler, Travis Scrimshaw
        Authors:  Daniel Krenn,      |  Work issues:
  Alex Raichev                       |       Commit:
Report Upstream:  N/A                |  a30a18a230a1f77fac00e636b779df8f571eda62
         Branch:                     |     Stopgaps:
  public/combinat/10519              |
   Dependencies:                     |
-------------------------------------+-------------------------------------
Changes (by vbraun):

 * status:  positive_review => needs_work


Comment:

 There are some tests that depend on ordering of symbolic variables:
 {{{
 sage -t --long
 src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py
 **********************************************************************
 File
 "src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py",
 line 98, in
 sage.rings.asymptotic.asymptotics_multivariate_generating_functions
 Failed example:
     s
 Expected:
     [{y: 1, x: 1}]
 Got:
     [{x: 1, y: 1}]
 **********************************************************************
 File
 "src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py",
 line 2828, in
 
sage.rings.asymptotic.asymptotics_multivariate_generating_functions.FractionWithFactoredDenominator.smooth_critical_ideal
 Failed example:
     F.smooth_critical_ideal(alpha)
 Expected:
     Ideal (y^2 + 2*a1/a2*y - 1, x + ((-a2)/a1)*y + (-a1 + a2)/a1) of
      Multivariate Polynomial Ring in x, y over Fraction Field of
      Multivariate Polynomial Ring in a1, a2 over Rational Field
 Got:
     Ideal (y^2 + 2*a1/a2*y - 1, x + ((-a2)/a1)*y + (a2 - a1)/a1) of
 Multivariate Polynomial Ring in x, y over Fraction Field of Multivariate
 Polynomial Ring in a2, a1 over Rational Field
 **********************************************************************
 File
 "src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py",
 line 4373, in
 
sage.rings.asymptotic.asymptotics_multivariate_generating_functions.coerce_point
 Failed example:
     p
 Expected:
     {y: 7/8, x: 1}
 Got:
     {x: 1, y: 7/8}
 **********************************************************************
 File
 "src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py",
 line 4375, in
 
sage.rings.asymptotic.asymptotics_multivariate_generating_functions.coerce_point
 Failed example:
     for k in sorted(p.keys()):
         print k, k.parent()
 Expected:
     y Symbolic Ring
     x Symbolic Ring
 Got:
     x Symbolic Ring
     y Symbolic Ring
 **********************************************************************
 3 items had failures:
    1 of  77 in
 sage.rings.asymptotic.asymptotics_multivariate_generating_functions
    1 of  16 in
 
sage.rings.asymptotic.asymptotics_multivariate_generating_functions.FractionWithFactoredDenominator.smooth_critical_ideal
    2 of  11 in
 
sage.rings.asymptotic.asymptotics_multivariate_generating_functions.coerce_point
     [809 tests, 4 failures, 74.86 s]
 }}}

--
Ticket URL: <http://trac.sagemath.org/ticket/10519#comment:127>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to