#20089: arc cosine surprising numeric results
-----------------------------+------------------------
       Reporter:  rws        |        Owner:
           Type:  defect     |       Status:  new
       Priority:  major      |    Milestone:  sage-7.1
      Component:  symbolics  |   Resolution:
       Keywords:             |    Merged in:
        Authors:             |    Reviewers:
Report Upstream:  N/A        |  Work issues:
         Branch:             |       Commit:
   Dependencies:             |     Stopgaps:
-----------------------------+------------------------

Old description:

> The default `RR` type of input FP numbers is surprising. If we have
> complex variables as default, why are floats of type `RR` not `CC`?
> {{{
> sage: cos(1.*I)
> 1.54308063481524
> sage: acos(_)
> 1.00000000000000*I
> sage: acos(1.54308063481524)
> NaN
> sage: acos(CC(1.54308063481524))
> 0.999999999999997*I
> sage: acos(RR(1.54308063481524))
> NaN
> }}}
> Neither SymPy nor Pari nor Maxima do this:
> {{{
> In [1]: acos(1.543)
> Out[1]: 0.999931383282944⋅ⅈ
> ? acos(1.543)
> %1 = 0.99993138328294395810833497263866793658*I
> (%i1) acos(1.543);
> (%o1)                        0.9999313832829438 %i
> }}}

New description:

 Here under the hood, `RR.acos` gets called. I think this should return
 meaningful values even if the value is outside the domain.
 {{{
 sage: cos(1.*I)
 1.54308063481524        <--- CC element
 sage: acos(_)
 1.00000000000000*I
 sage: acos(1.54308063481524)
 NaN
 sage: acos(CC(1.54308063481524))
 0.999999999999997*I
 sage: acos(RR(1.54308063481524))
 NaN
 }}}
 Neither SymPy nor Pari nor Maxima do this:
 {{{
 In [1]: acos(1.543)
 Out[1]: 0.999931383282944⋅ⅈ
 ? acos(1.543)
 %1 = 0.99993138328294395810833497263866793658*I
 (%i1) acos(1.543);
 (%o1)                        0.9999313832829438 %i
 }}}

--

Comment (by rws):

 I have come to a conclusion, and adapted the ticket description.

--
Ticket URL: <http://trac.sagemath.org/ticket/20089#comment:5>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to