#20738: singular 3.1.7 fails to build using GCC 6
-------------------------------------+-------------------------------------
Reporter: aapitzsch | Owner:
Type: defect | Status: positive_review
Priority: major | Milestone: sage-7.3
Component: build | Resolution:
Keywords: GCC6 c++11 | Merged in:
Authors: André Apitzsch | Reviewers: Volker Braun
Report Upstream: N/A | Work issues:
Branch: | Commit:
u/aapitzsch/gcc6issue | 04c0af9477f794f5d00a1c813725049d340bf4bd
Dependencies: | Stopgaps:
-------------------------------------+-------------------------------------
Comment (by leif):
Replying to [comment:11 leif]:
> Replying to [comment:10 vbraun]:
> > Singular works with `-fno-delete-null-pointer-checks`, which I added
at #20926
>
> While it doesn't immediately crash, I'm getting doctest failures with
that.
>
> `ptestlong` hasn't (fully) finished yet, but it seems just because of a
singular Singular process running 100%...
That's the last test it was waiting for (with Singular 100% busy for a
while):
{{{
sage -t --long
src/sage/schemes/plane_conics/con_rational_function_field.py
Timed out (and interrupt failed)
**********************************************************************
Tests run before process (pid=10413) timed out:
sage: K = FractionField(PolynomialRing(QQ, 't')) ## line 17 ##
sage: P.<X, Y, Z> = K[] ## line 18 ##
sage: Conic(X^2 + Y^2 - Z^2) ## line 19 ##
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring
in t over Rational Field defined by X^2 + Y^2 - Z^2
sage: K.<t> = FractionField(QQ['t']) ## line 26 ##
sage: C = Conic([1,-t,t]) ## line 27 ##
sage: C.has_rational_point(point = True) ## line 28 ##
(True, (0 : 1 : 1))
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line
30 ##
0
sage: K = FractionField(PolynomialRing(QQ, 't')) ## line 58 ##
sage: P.<X, Y, Z> = K[] ## line 59 ##
sage: Conic(X^2 + Y^2 - Z^2) ## line 60 ##
Projective Conic Curve over Fraction Field of Univariate Polynomial Ring
in t over Rational Field defined by X^2 + Y^2 - Z^2
sage: K = FractionField(PolynomialRing(QQ, 't')) ## line 67 ##
sage: Conic([K(1), 1, -1])._test_pickling() ## line 68 ##
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line
76 ##
0
sage: c = Conic([1, 1, 1]); c ## line 83 ##
Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2
sage: sig_on_count() # check sig_on/off pairings (virtual doctest) ## line
86 ##
0
sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) ## line 129 ##
sage: C = Conic(K, [t^2-2, 2*t^3, -2*t^3-13*t^2-2*t+18]) ## line 130 ##
sage: C.has_rational_point() ## line 135 ##
True
sage: C.has_rational_point(point=True) ## line 137 ##
(True, (5*t : 8 : 1))
sage: F.<i> = QuadraticField(-1) ## line 139 ##
sage: R.<t> = F[] ## line 140 ##
sage: C = Conic([1,i*t,-t^2+4]) ## line 141 ##
sage: C.has_rational_point(point = True) ## line 142 ##
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
(True, (-t - 2*i : -2*i : 1))
sage: K.<t> = QQ[] ## line 149 ##
sage: C = Conic([4, -4, 8, 1, -4, t + 4]) ## line 150 ##
sage: C.has_rational_point(point=True) ## line 151 ##
(True, (1/2 : 1 : 0))
sage: K.<t> = QQ[] ## line 156 ##
sage: C = Conic(K, [t^2, (t-1), -2*(t-1)]) ## line 157 ##
sage: C.has_rational_point() ## line 158 ##
False
sage: C.has_rational_point(point=True) ## line 160 ##
(False, None)
sage: F.<t1> = FractionField(QQ['t1']) ## line 167 ##
sage: K.<t2> = FractionField(F['t2']) ## line 168 ##
sage: a = K(1) ## line 169 ##
sage: b = 2*t2^2+2*t1*t2-t1^2 ## line 170 ##
sage: c = -3*t2^4-4*t1*t2^3+8*t1^2*t2^2+16*t1^3-t2-48*t1^4 ## line 171 ##
sage: C = Conic([a,b,c]) ## line 172 ##
sage: C.has_rational_point() ## line 173 ##
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
sage: P.<u> = QQ[] ## line 186 ##
sage: E = P.fraction_field() ## line 187 ##
sage: Q.<Y> = E[] ## line 188 ##
sage: F.<v> = E.extension(Y^2 - u^3 - 1) ## line 189 ##
sage: R.<t> = F[] ## line 190 ##
sage: K = R.fraction_field() ## line 191 ##
sage: C = Conic(K, [u, v, 1]) ## line 192 ##
sage: C.has_rational_point() ## line 193 ##
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
verbose 0 (3369: multi_polynomial_ideal.py, groebner_basis) Warning:
falling back to very slow toy implementation.
sage: K.<t> = PolynomialRing(GF(7)) ## line 205 ##
sage: C = Conic([5*t^2+4, t^2+3*t+3, 6*t^2+3*t+2, 5*t^2+5, 4*t+3,
4*t^2+t+5]) ## line 206 ##
sage: C.has_rational_point() ## line 207 ##
sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) ## line 224 ##
sage: a = (2*t^2 - 3/2*t + 1)/(37/3*t^2 + t - 1/4) ## line 225 ##
sage: b = (1/2*t^2 + 1/3)/(-73*t^2 - 2*t + 11/4) ## line 226 ##
sage: c = (6934/3*t^6 + 8798/3*t^5 - 947/18*t^4 + 3949/9*t^3 +
20983/18*t^2 + 28/3*t - 131/3)/(-2701/3*t^4 - 293/3*t^3 + 301/6*t^2 +
13/4*t - 11/16) ## line 227 ##
sage: C = Conic([a,b,c]) ## line 228 ##
sage: C.has_rational_point(point=True) ## line 229 ##
(True, (4*t + 4 : 2*t + 2 : 1))
sage: K.<t> = FractionField(PolynomialRing(QQ, 't')) ## line 234 ##
sage: a = (-1/3*t^6 - 14*t^5 - 1/4*t^4 + 7/2*t^2 - 1/2*t - 1)/(24/5*t^6 -
t^5 - 1/4*t^4 + t^3 - 3*t^2 + 8/5*t + 5) ## line 235 ##
sage: b = (-3*t^3 + 8*t + 1/2)/(-1/3*t^3 + 3/2*t^2 + 1/12*t + 1/2) ## line
236 ##
sage: c = (1232009/225*t^25 - 1015925057/8100*t^24 +
1035477411553/1458000*t^23 + 7901338091/30375*t^22 -
1421379260447/729000*t^21 + 266121260843/972000*t^20 +
80808723191/486000*t^19 - 516656082523/972000*t^18 +
21521589529/40500*t^17 + 4654758997/21600*t^16 -
20064038625227/9720000*t^15 - 173054270347/324000*t^14 +
536200870559/540000*t^13 - 12710739349/50625*t^12 -
197968226971/135000*t^11 - 134122025657/810000*t^10 +
22685316301/120000*t^9 - 2230847689/21600*t^8 - 70624099679/270000*t^7 -
4298763061/270000*t^6 - 41239/216000*t^5 - 13523/36000*t^4 + 493/36000*t^3
+ 83/2400*t^2 + 1/300*t + 1/200)/(-27378/125*t^17 + 504387/500*t^16 -
97911/2000*t^15 + 1023531/4000*t^14 + 1874841/8000*t^13 +
865381/12000*t^12 + 15287/375*t^11 + 6039821/6000*t^10 + 599437/1500*t^9 +
18659/250*t^8 + 1218059/6000*t^7 + 2025127/3000*t^6 + 1222759/6000*t^5 +
38573/200*t^4 + 8323/125*t^3 + 15453/125*t^2 + 17031/500*t + 441/10) ##
line 237 ##
sage: C = Conic([a,b,c]) ## line 238 ##
sage: C.has_rational_point(point = True) # long time (4 seconds) ## line
239 ##
**********************************************************************
}}}
Excluding unrelated failures in `src/sage/dev/`, the following tests
failed (still in 7.2) with Singular built with GCC 6.1.0 and `-fno-delete-
null-pointer-checks`:
{{{
----------------------------------------------------------------------
...
sage -t --long src/sage/doctest/forker.py # 1 doctest failed
sage -t --long src/sage/libs/singular/standard_options.py # 2 doctests
failed
sage -t --long src/sage/matrix/matrix_double_dense.pyx # 1 doctest failed
sage -t --long src/sage/libs/gap/assigned_names.py # 1 doctest failed
sage -t --long src/sage/rings/invariant_theory.py # 13 doctests failed
sage -t --long
src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py
# 2 doctests failed
sage -t --long src/sage/rings/ideal.py # 1 doctest failed
sage -t --long src/sage/rings/polynomial/multi_polynomial_ideal.py # 2
doctests failed
sage -t --long
src/sage/rings/polynomial/multi_polynomial_ideal_libsingular.pyx # 1
doctest failed
sage -t --long src/sage/schemes/elliptic_curves/ell_field.py # 1 doctest
failed
sage -t --long src/sage/schemes/elliptic_curves/ell_generic.py # 1
doctest failed
sage -t --long src/sage/schemes/elliptic_curves/ell_curve_isogeny.py # 1
doctest failed
sage -t --long src/sage/schemes/elliptic_curves/isogeny_small_degree.py #
15 doctests failed
sage -t --long src/sage/schemes/elliptic_curves/jacobian.py # 1 doctest
failed
sage -t --long src/sage/tests/french_book/mpoly.py # 1 doctest failed
sage -t --long
src/sage/schemes/plane_conics/con_rational_function_field.py # Timed out
(and interrupt failed)
----------------------------------------------------------------------
}}}
The GAP failure is unrelated (but typical here, passes when rerun), while
the forker doctest failure is indeed indirectly caused by Singular (or
libsingular), also fails when rerun:
{{{
sage -t --long src/sage/doctest/forker.py
**********************************************************************
File "src/sage/doctest/forker.py", line 1402, in
sage.doctest.forker.DocTestDispatcher.serial_dispatch
Failed example:
DD.serial_dispatch()
Expected:
sage -t .../rings/homset.py
[... tests, ... s]
sage -t .../rings/ideal.py
[... tests, ... s]
Got:
sage -t
/data/Sage/release/stable/sage-7.2-gcc-6.1.0/src/sage/rings/homset.py
[46 tests, 0.12 s]
sage -t
/data/Sage/release/stable/sage-7.2-gcc-6.1.0/src/sage/rings/ideal.py
**********************************************************************
File
"/data/Sage/release/stable/sage-7.2-gcc-6.1.0/src/sage/rings/ideal.py",
line 1611, in sage.rings.ideal.Cyclic
Failed example:
len(B)
Expected:
45
Got:
1
**********************************************************************
1 item had failures:
1 of 9 in sage.rings.ideal.Cyclic
[351 tests, 1 failure, 52.37 s]
**********************************************************************
1 item had failures:
1 of 17 in sage.doctest.forker.DocTestDispatcher.serial_dispatch
[439 tests, 1 failure, 63.08 s]
----------------------------------------------------------------------
sage -t --long src/sage/doctest/forker.py # 1 doctest failed
----------------------------------------------------------------------
}}}
--
Ticket URL: <https://trac.sagemath.org/ticket/20738#comment:12>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.