#8321: numerical integration with arbitrary precision
-------------------------+--------------------------------------------------
   Reporter:  burcin     |       Owner:  burcin    
       Type:  defect     |      Status:  new       
   Priority:  major      |   Milestone:  sage-4.3.3
  Component:  symbolics  |    Keywords:            
     Author:             |    Upstream:  N/A       
   Reviewer:             |      Merged:            
Work_issues:             |  
-------------------------+--------------------------------------------------
 From the sage-devel:

 {{{
 On Feb 20, 2010, at 12:40 PM, John H Palmieri wrote:
 ...
 > I was curious about this, so I tried specifying the number of digits:
 >
 > sage: h = integral(sin(x)/x^2, (x, 1, pi/2)); h
 > integrate(sin(x)/x^2, x, 1, 1/2*pi)
 > sage: h.n()
 > 0.33944794097891573
 > sage: h.n(digits=14)
 > 0.33944794097891573
 > sage: h.n(digits=600)
 > 0.33944794097891573
 > sage: h.n(digits=600) == h.n(digits=14)
 > True
 > sage: h.n(prec=50) == h.n(prec=1000)
 > True
 >
 > Is there an inherit limit in Sage on the accuracy of numerical
 > integrals?
 }}}

 The `_evalf_` function defined on line 179 of
 `sage/symbolic/integration/integral.py` calls the gsl
 `numerical_integral()` function and ignores the precision.

 We should raise a `NotImplementedError` for high precision, or find a way
 to do arbitrary precision numerical integration.

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/8321>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en.

Reply via email to