#8321: numerical integration with arbitrary precision
-------------------------+--------------------------------------------------
Reporter: burcin | Owner: burcin
Type: defect | Status: new
Priority: major | Milestone: sage-4.3.3
Component: symbolics | Keywords:
Author: | Upstream: N/A
Reviewer: | Merged:
Work_issues: |
-------------------------+--------------------------------------------------
From the sage-devel:
{{{
On Feb 20, 2010, at 12:40 PM, John H Palmieri wrote:
...
> I was curious about this, so I tried specifying the number of digits:
>
> sage: h = integral(sin(x)/x^2, (x, 1, pi/2)); h
> integrate(sin(x)/x^2, x, 1, 1/2*pi)
> sage: h.n()
> 0.33944794097891573
> sage: h.n(digits=14)
> 0.33944794097891573
> sage: h.n(digits=600)
> 0.33944794097891573
> sage: h.n(digits=600) == h.n(digits=14)
> True
> sage: h.n(prec=50) == h.n(prec=1000)
> True
>
> Is there an inherit limit in Sage on the accuracy of numerical
> integrals?
}}}
The `_evalf_` function defined on line 179 of
`sage/symbolic/integration/integral.py` calls the gsl
`numerical_integral()` function and ignores the precision.
We should raise a `NotImplementedError` for high precision, or find a way
to do arbitrary precision numerical integration.
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/8321>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en.