#10682: sum fails with lower bound != 0 or 1 (upgrade maxima to 5.26)
-----------------------------------------------------------------------------------------------+
Reporter: fmaltey
| Owner: burcin
Type: defect
| Status: needs_work
Priority: critical
| Milestone: sage-5.0
Component: symbolics
| Keywords:
Work_issues: several doctests need to be patched due to changes in output
format/term order | Upstream: N/A
Reviewer:
| Author:
Merged:
| Dependencies:
-----------------------------------------------------------------------------------------------+
Comment(by dimpase):
Here is the patch I propose for {{{calculus/desolvers.py}}}:
{{{
68c68
< def desolve(de, dvar, ics=None, ivar=None, show_method=False,
contrib_ode=False, domain='complex'):
---
> def desolve(de, dvar, ics=None, ivar=None, show_method=False,
contrib_ode=False):
113,115d112
< - ``domain`` - (optional) specifies the domain to use to solve the
ODE.
< By default it is complex numbers; setting domain='real' will make
it real numbers.
< It corresponds to Maxima's 'domain : complex;' or, respectively,
'domain : real;'
361,365d357
< sage: desolve(x*diff(y,x)-x*sqrt(y^2+x^2)-y == 0, y,
contrib_ode=True, domain='real')
< [x - arcsinh(y(x)/x) == c]
<
< Trac #10682 updated Maxima to 5.26, and it started to show a
different solution in the complex domain for the ODE above::
<
367,368c359,360
< [1/2*(2*x^2*sqrt(x^(-2)) -
2*x*sqrt(x^(-2))*arcsinh(y(x)/sqrt(x^2)) -
2*x*sqrt(x^(-2))*arcsinh(y(x)^2/(sqrt(y(x)^2)*x)) +
log(4*(2*x^2*sqrt((x^2*y(x)^2 + y(x)^4)/x^2)*sqrt(x^(-2)) + x^2 +
2*y(x)^2)/x^2))/(x*sqrt(x^(-2))) == c]
<
---
> [x - arcsinh(y(x)/x) == c]
>
428d419
< P("domain : "+domain)
}}}
It gives deslove() one more optional parameter {{{domain}}}, which takes
care of this new discrepancy with this ODE.
I'll update the whole patch shortly, test, and then expect the ticket to
be ready for review.
--
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/10682#comment:21>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to
[email protected].
For more options, visit this group at
http://groups.google.com/group/sage-trac?hl=en.