THE 15th-century Renaissance was triggered, Lloyd began, by a flood of new 
information which changed how people thought about everything, and the same 
thing is happening now.  All of us have had to shift, just in the last couple 
decades, from hungry hunters and gatherers of information to overwhelmed 
information filter-feeders.

Information is physical.  A bit can be represented by an electron here to 
signify 0, and there to signify 1.  Information processing is moving electrons 
from here to there.  But for a “qubit" in a quantum computer, an electron is 
both here and there at the same time, thanks to "wave-particle duality.”  Thus 
with “quantum parallelism” you can do massively more computation than in 
classical computers.  It’s like the difference between the simple notes of 
plainsong and all that a symphony can do—a huge multitude of instruments 
interacting simultaneously, playing arrays of sharps and flats and complex 
chords.

Quantum computers can solve important problems like enormous equations and 
factoring--cracking formerly uncrackable public-key cryptography, the basis of 
all online commerce.  With their ability to do “oodles of things at once," 
quantum computers can also simulate the behavior of larger quantum systems, 
opening new frontiers of science, as Richard Feynman pointed out in the 1980s.  

Simple quantum computers have been built since 1995, by Lloyd and ever more 
others.  Mechanisms tried so far include: electrons within electric fields; 
nuclear spin (clockwise and counter); atoms in ground state and excited state 
simultaneously; photons polarized both horizontally and vertically; and 
super-conducting loops going clockwise and counter-clockwise at the same time; 
and many more.  To get the qubits to perform operations—to compute—you can use 
an optical lattice or atoms in whole molecules or integrated circuits, and more 
to come.  

The more qubits, the more interesting the computation.  Starting with 2 qubits 
back in 1996, some systems are now up to several dozen qubits.  Over the next 
5-10 years we should go from 50 qubits to 5,000 qubits, first in 
special-purpose systems but eventually in general-purpose computers.  Lloyd 
added, “And there’s also the fascinating field of using funky quantum effects 
such as coherence and entanglement to make much more accurate sensors, imagers, 
and detectors.”  Like, a hundred thousand to a million times more accurate.  
GPS could locate things to the nearest micron instead of the nearest meter.

Even with small quantum computers we will be able to expand the capability of 
machine learning by sifting vast collections of data to detect patterns and 
move on from supervised-learning (“That squiggle is a 7”) toward 
unsupervised-learning—systems that learn to learn.

The universe is a quantum computer, Lloyd concluded.  Biological life is all 
about extracting meaningful information from a sea of bits.  For instance, 
photosynthesis uses quantum mechanics in a very sophisticated way to increase 
its efficiency.  Human life is expanding on what life has always been—an 
exercise in machine learning.

                                                                                
        —Stewart Brand  s...@longnow.org <mailto:s...@longnow.org>


[A linkable version of this summary is on Medium here 
<https://medium.com/@stewartbrand/quantum-computer-reality-32c721480d74#.awl71p9ys>.
  The video and audio versions of the talk are up at Long Now, here 
<http://longnow.org/seminars/02016/aug/09/quantum-computer-reality/>.]
_______________________________________________
SALT mailing list
unsubscribe / change email: http://list.longnow.org/mailman/listinfo/salt

Reply via email to