n_node_samples is the count of actual dataset samples in each node. weighted_n_node_samples is the same, weighted by the class_weight and/or sample_weight.
On Sun, Aug 30, 2015 at 8:02 AM, Rex X <dnsr...@gmail.com> wrote: > DecisionTreeClassifier.tree_.n_node_samples is the total number of > samples in all classes of one node, and DecisionTreeClassifier.tree_.value > is the computed weight for each class of one node. Only if the > sample_weight and class_weight of this DecisionTreeClassifier is one, > then this attribute equals the number of samples of each class of one > node. > > But for the general case with a given sample_weight and class_weight, is > there any attribute telling us the number of samples of each class within > one node? > > > import pandas as pd > from sklearn.datasets import load_iris > from sklearn import tree > import sklearn > > iris = sklearn.datasets.load_iris() > clf = tree.DecisionTreeClassifier(class_weight={0 : 0.30, 1: 0.3, 2:0.4}, > max_features="auto") > clf.fit(iris.data, iris.target) > > > # the total number of samples in all classes of each node > clf.tree_.n_node_samples > > # the computed weight for each class of each node > clf.tree_.value > > > > > ------------------------------------------------------------------------------ > > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general