Ah yeah, they are. Nevermind. On Sun, Aug 30, 2015 at 8:00 AM, Trevor Stephens <trev.steph...@gmail.com> wrote:
> On the current master branch, using the OP's example: > > In [7]: clf.tree_.weighted_n_node_samples > Out[7]: > array([ 50. , 15. , 35. , 16. , 14.1, 1.9, 0.7, 0.4, 0.3, > 1.2, 19. , 3.1, 0.7, 0.4, 0.3, 2.4, 15.9, 0.3, > 15.6]) > > On Sun, Aug 30, 2015 at 8:43 AM, Jacob Schreiber <jmschreibe...@gmail.com> > wrote: > >> Trevor, those attributes are present while the tree is being built, but >> are not kept in the final tree object. >> >> On Sun, Aug 30, 2015 at 7:15 AM, Trevor Stephens <trev.steph...@gmail.com >> > wrote: >> >>> n_node_samples is the count of actual dataset samples in each >>> node. weighted_n_node_samples is the same, weighted by the class_weight >>> and/or sample_weight. >>> >>> On Sun, Aug 30, 2015 at 8:02 AM, Rex X <dnsr...@gmail.com> wrote: >>> >>>> DecisionTreeClassifier.tree_.n_node_samples is the total number of >>>> samples in all classes of one node, and >>>> DecisionTreeClassifier.tree_.value is the computed weight for each >>>> class of one node. Only if the sample_weight and class_weight of this >>>> DecisionTreeClassifier >>>> is one, then this attribute equals the number of samples of each class of >>>> one node. >>>> >>>> But for the general case with a given sample_weight and class_weight, >>>> is there any attribute telling us the number of samples of each class >>>> within one node? >>>> >>>> >>>> import pandas as pd >>>> from sklearn.datasets import load_iris >>>> from sklearn import tree >>>> import sklearn >>>> >>>> iris = sklearn.datasets.load_iris() >>>> clf = tree.DecisionTreeClassifier(class_weight={0 : 0.30, 1: 0.3, >>>> 2:0.4}, max_features="auto") >>>> clf.fit(iris.data, iris.target) >>>> >>>> >>>> # the total number of samples in all classes of each node >>>> clf.tree_.n_node_samples >>>> >>>> # the computed weight for each class of each node >>>> clf.tree_.value >>>> >>>> >>>> >>>> >>>> ------------------------------------------------------------------------------ >>>> >>>> _______________________________________________ >>>> Scikit-learn-general mailing list >>>> Scikit-learn-general@lists.sourceforge.net >>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >>>> >>>> >>> >>> >>> ------------------------------------------------------------------------------ >>> >>> _______________________________________________ >>> Scikit-learn-general mailing list >>> Scikit-learn-general@lists.sourceforge.net >>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >>> >>> >> >> >> ------------------------------------------------------------------------------ >> >> _______________________________________________ >> Scikit-learn-general mailing list >> Scikit-learn-general@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >> >> > > > ------------------------------------------------------------------------------ > > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general