Ah yeah, they are. Nevermind.

On Sun, Aug 30, 2015 at 8:00 AM, Trevor Stephens <trev.steph...@gmail.com>
wrote:

> On the current master branch, using the OP's example:
>
> In [7]: clf.tree_.weighted_n_node_samples
> Out[7]:
> array([ 50. ,  15. ,  35. ,  16. ,  14.1,   1.9,   0.7,   0.4,   0.3,
>          1.2,  19. ,   3.1,   0.7,   0.4,   0.3,   2.4,  15.9,   0.3,
>  15.6])
>
> On Sun, Aug 30, 2015 at 8:43 AM, Jacob Schreiber <jmschreibe...@gmail.com>
> wrote:
>
>> Trevor, those attributes are present while the tree is being built, but
>> are not kept in the final tree object.
>>
>> On Sun, Aug 30, 2015 at 7:15 AM, Trevor Stephens <trev.steph...@gmail.com
>> > wrote:
>>
>>> n_node_samples is the count of actual dataset samples in each
>>> node. weighted_n_node_samples is the same, weighted by the class_weight
>>> and/or sample_weight.
>>>
>>> On Sun, Aug 30, 2015 at 8:02 AM, Rex X <dnsr...@gmail.com> wrote:
>>>
>>>> DecisionTreeClassifier.tree_.n_node_samples is the total number of
>>>> samples in all classes of one node, and
>>>> DecisionTreeClassifier.tree_.value is the computed weight for each
>>>> class of one node. Only if the sample_weight and class_weight of this 
>>>> DecisionTreeClassifier
>>>> is one, then this attribute equals the number of samples of each class of
>>>> one node.
>>>>
>>>> But for the general case with a given sample_weight and class_weight,
>>>> is there any attribute telling us the number of samples of each class
>>>> within one node?
>>>>
>>>>
>>>> import pandas as pd
>>>> from sklearn.datasets import load_iris
>>>> from sklearn import tree
>>>> import sklearn
>>>>
>>>> iris = sklearn.datasets.load_iris()
>>>> clf = tree.DecisionTreeClassifier(class_weight={0 : 0.30, 1: 0.3,
>>>> 2:0.4}, max_features="auto")
>>>> clf.fit(iris.data, iris.target)
>>>>
>>>>
>>>> # the total number of samples in all classes of each node
>>>> clf.tree_.n_node_samples
>>>>
>>>> # the computed weight for each class of each node
>>>> clf.tree_.value
>>>>
>>>>
>>>>
>>>>
>>>> ------------------------------------------------------------------------------
>>>>
>>>> _______________________________________________
>>>> Scikit-learn-general mailing list
>>>> Scikit-learn-general@lists.sourceforge.net
>>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>>
>>>>
>>>
>>>
>>> ------------------------------------------------------------------------------
>>>
>>> _______________________________________________
>>> Scikit-learn-general mailing list
>>> Scikit-learn-general@lists.sourceforge.net
>>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>>
>>>
>>
>>
>> ------------------------------------------------------------------------------
>>
>> _______________________________________________
>> Scikit-learn-general mailing list
>> Scikit-learn-general@lists.sourceforge.net
>> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>>
>>
>
>
> ------------------------------------------------------------------------------
>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
>
>
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to