Hi Jacob, Is there anything we can do to get better generalized decision rules?
For example, after one tree fitting, select top (N-1) features by feature_importance, and then do the fitting again. Can this be helpful? Best, Rex On Sun, Aug 30, 2015 at 8:07 AM, Jacob Schreiber <jmschreibe...@gmail.com> wrote: > Tree pruning is currently not supported in sklearn. > > On Sun, Aug 30, 2015 at 6:44 AM, Rex X <dnsr...@gmail.com> wrote: > >> Tree pruning process is very important to get a better decision tree. >> >> One idea is to recursively remove the leaf node which cause least hurt to >> the decision tree. >> >> Any idea how to do this for the following sample case? >> >> >> import pandas as pd >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> import sklearn >>> >>> iris = sklearn.datasets.load_iris() >>> clf = tree.DecisionTreeClassifier(class_weight={0 : 0.30, 1: 0.3, >>> 2:0.4}, max_features="auto") >>> clf.fit(iris.data, iris.target) >>> >> >> >> ------------------------------------------------------------------------------ >> >> _______________________________________________ >> Scikit-learn-general mailing list >> Scikit-learn-general@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general >> >> > > > ------------------------------------------------------------------------------ > > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > >
------------------------------------------------------------------------------
_______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general