You can do ensembles with prepruning (max-depth etc) but not post-pruning.
The general consensus is that post-pruning doesn't help in ensembles.
On 9/2/2015 8:43 PM, Rex X wrote:
Andreas,
Can we do ensembles with *pruning* in scikit-learn?
Rex
On Mon, Aug 31, 2015 at 9:15 AM, Andreas Mueller <t3k...@gmail.com
<mailto:t3k...@gmail.com>> wrote:
You will not get results close to ensembles with pruning (unless
your dataset is very specific).
You can probably do your node filtering on ensembles, too.
On 08/30/2015 03:44 PM, Rex X wrote:
Jacob, I agree with both of your points about the ensemble
methods. They can give quite good prediction result.
But the question is to interpret these models. We want to extract
specific decision rules, as fraud transaction declining rules for
example. The motivation is to port these rules to other systems.
Currently I am searching each node of one tree, to filter these
nodes satisfying the conditions I want. I did obtained some
interesting result. I wish that I can obtain result close to
ensemble method.
Any further tips?
Best,
Rex
On Sun, Aug 30, 2015 at 11:45 AM, Jacob Schreiber
<jmschreibe...@gmail.com <mailto:jmschreibe...@gmail.com>> wrote:
Usually one would use an ensemble of trees to prevent
overfitting. Two common techniques are a Random Forest or
Gradient Boosting Trees. Gradient Boosting in particular has
done well in competitions recently.
While this may give you better generalization, it becomes
difficult to interpret these models. You can try to constrain
your model by requiring a higher number of examples, or
higher weight of examples, be present at each leaf. This will
prevent the tree from splitting to accomodate a single point,
which may cause overfitting.
On Sun, Aug 30, 2015 at 10:37 AM, Rex X <dnsr...@gmail.com
<mailto:dnsr...@gmail.com>> wrote:
Hi Jacob,
Is there anything we can do to get better generalized
decision rules?
For example, after one tree fitting, select top (N-1)
features by feature_importance, and then do the fitting
again.
Can this be helpful?
Best,
Rex
On Sun, Aug 30, 2015 at 8:07 AM, Jacob Schreiber
<jmschreibe...@gmail.com
<mailto:jmschreibe...@gmail.com>> wrote:
Tree pruning is currently not supported in sklearn.
On Sun, Aug 30, 2015 at 6:44 AM, Rex X
<dnsr...@gmail.com <mailto:dnsr...@gmail.com>> wrote:
Tree pruning process is very important to get a
better decision tree.
One idea is to recursively remove the leaf node
which cause least hurt to the decision tree.
Any idea how to do this for the following sample
case?
import pandas as pd
from sklearn.datasets import load_iris
from sklearn import tree
import sklearn
iris = sklearn.datasets.load_iris()
clf =
tree.DecisionTreeClassifier(class_weight={0 :
0.30, 1: 0.3, 2:0.4}, max_features="auto")
clf.fit(iris.data, iris.target)
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
<mailto:Scikit-learn-general@lists.sourceforge.net>
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Monitor Your Dynamic Infrastructure at Any Scale With Datadog!
Get real-time metrics from all of your servers, apps and tools
in one place.
SourceForge users - Click here to start your Free Trial of Datadog now!
http://pubads.g.doubleclick.net/gampad/clk?id=241902991&iu=/4140
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general
------------------------------------------------------------------------------
Monitor Your Dynamic Infrastructure at Any Scale With Datadog!
Get real-time metrics from all of your servers, apps and tools
in one place.
SourceForge users - Click here to start your Free Trial of Datadog now!
http://pubads.g.doubleclick.net/gampad/clk?id=241902991&iu=/4140
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general