Hi, I am not sure how your custom metric works, but would a np.where(x >= 0.5, 
1., 0.) work in your case?

> On Jan 12, 2016, at 1:08 PM, A neuman <themagenta...@gmail.com> wrote:
> 
> Sorry, thats not right what I wrote:
> X:
> [ 0.6371319   0.54557285  0.30214217  0.14690307  0.49778446  0.89183238
>   0.52445514  0.63379164  0.71873681  0.55008567] 
> 
> Y:
> [ 0.6371319   0.54557285  0.30214217  0.14690307  0.49778446  0.89183238
>   0.52445514  0.63379164  0.71873681  0.55008567] 
> 
> X:
> [ 0.          0.          0.          0.02358491  0.00471698  0.          0.
>   0.          0.          0.00471698  0.00471698  0.00471698  0.02830189
>   0.00943396  0.     .............................52358491  0.53773585
>   0.63207547  0.51886792  0.66037736  0.75        0.57075472  0.59433962
>   0.63679245  0.8490566   0.71698113  0.02358491] 
> 
> Y:
> [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.
>   1.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  1.  0.  0.  1.  0.  1.  0.  0.  1.  0.  1.  1.  0.
>   1.  1.  1.  1.  0.] 
> 
> and so on..
> 
> but X should be also containing 1's and 0's.  
> 
> best,
> 
> On 12 January 2016 at 19:04, A neuman <themagenta...@gmail.com 
> <mailto:themagenta...@gmail.com>> wrote:
> Hey, 
> 
> I Have an another problem,
> 
> if I'm using my own metric, there are not only the samples in x and y.
> I'm using a 10 fold cv with k-NN Classifier.
> My Attributes are only 1's and 0's, but if im printing them out, I'll get:
> 
> KNeighborsClassifier(metric=myFunc)
> 
> def myFunc(x,y):
>     
>     print x,'\n'
>     print y,'\n'
> 
> I Cutted some values due to the size:
> 
> Thats for x:
> 
> [ 0.6371319   0.54557285  0.30214217  0.14690307  0.49778446  0.89183238
>   0.52445514  0.63379164  0.71873681  0.55008567] 
> 
> [ 0.6371319   0.54557285  0.30214217  0.14690307  0.49778446  0.89183238
>   0.52445514  0.63379164  0.71873681  0.55008567] 
> 
> [ 0.          0.          0.          0.02358491  0.00471698  0.          0.
>   0.          0.          0.00471698  0.00471698  0.00471698  0.02830189
>   0.00943396  0.     .............................52358491  0.53773585
>   0.63207547  0.51886792  0.66037736  0.75        0.57075472  0.59433962
>   0.63679245  0.8490566   0.71698113  0.02358491] 
> 
> [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.
>   1.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  1.  0.  0.  1.  0.  1.  0.  0.  1.  0.  1.  1.  0.
>   1.  1.  1.  1.  0.] 
> 
> 
> 
> and for y
> 
> [ 0.          0.          0.          0.02358491  0.00471698  0.          0.
>   0.          0.          0.00471698  0.00471698  0.00471698  0.02830189
>   0.          ..........
>   0.63207547  0.51886792  0.66037736  0.75        0.57075472  0.59433962
>   0.63679245  0.8490566   0.71698113  0.02358491] 
> 
> [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  1.  0.  0.
>   0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.
>   0.  1.  0.  0.  1.  0.  1.  1.  0.  0.  0.  0.  0.  1.  0.  0.  1.  0.
>   0.  1.  1.  0.  0.  1.  0.  0.  0.  1.  0.  0.  0.  0.  1.  0.  1.  0.
>   0.  0.  0.  1.  1.  0.  0.  0.  0.  0.  0.  0.  1.  1.  0.  0.  1.  1.
>   0.  0.  0.  0.  1.  0.  0.  0.  0.  1.  0.  0.  0.  0.  1.  0.  1.  0.
>   0.  0.  0.  0.  1.  0.  0.  1.  1.  1.  1.  0.  0.  0.  0.  0.  1.  0.
>   0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  0.  0.  1.  0.  1.  1.  1.  1.
>   1.  1.  1.  1.  0.] 
> 
> 
> The problem is, I have to count the occurences from 0's and 1's in x and y. 
> And if there are some other arrays
> lik 0.636..... I dont get the right solution. So in general, i only want the 
> array with 1 and 0
> 
> best,
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> On 9 January 2016 at 03:58, A neuman <themagenta...@gmail.com 
> <mailto:themagenta...@gmail.com>> wrote:
> Ah, that helped me a lot!!!
> 
> So i just write my own function that returns an skalar. This function is used 
> in the metric parameter of the kNN function. 
> 
> Thank you!!!
> 
> 
> On 9 January 2016 at 03:41, Sebastian Raschka <se.rasc...@gmail.com 
> <mailto:se.rasc...@gmail.com>> wrote:
> You could just need “regular" Python function that outputs a scalar. For 
> example, consider the following example:
> 
> >>> from sklearn.neighbors import NearestNeighbors
> >>> import numpy as np
> >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
> >>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
> >>> distances, indices = nbrs.kneighbors(X)
> >>> distances
> array([[ 0.        ,  1.        ],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.41421356],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.41421356]])
> 
> (note that I am using the NearestNeighbors class here, but the same applies 
> to the KNeighborsClassifier)
> 
> For example, to compute the distances between samples as Euclidean distance 
> (the default) you could just define a Python function
> 
> >>> def eucldist(x, y):
> ...    return np.sqrt(np.sum((x-y)**2))
> >>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree', 
> >>> metric=eucldist).fit(X)
> >>> distances, indices = nbrs.kneighbors(X)
> >>> distances
> array([[ 0.        ,  1.        ],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.41421356],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.        ],
>        [ 0.        ,  1.41421356]])
> 
> (alt. you could provide it as lambda function)
> 
> Best,
> Sebastian
> 
> > On Jan 8, 2016, at 9:19 PM, A neuman <themagenta...@gmail.com 
> > <mailto:themagenta...@gmail.com>> wrote:
> >
> > Hello everyone,
> >
> > I actually want to use the KNeighboursClassifier, with my own distances.
> >
> > in the Documentation stands the following:
> >
> > [callable] : a user-defined function which accepts an array of distances, 
> > and returns an array of the same shape containing the weights.
> >
> > I just dont know, how should the array looks like?
> >
> > For example, if I have 100 Samples, the array has a size 100*100?
> > So for every samples there is a distance to the other 99 samples.
> >
> > [[0.4, 0.2, ...],[0.3,0.1,...]........[0.9,0.6,...]]   something like this?
> >
> > I would appreciate your help.
> >
> > best,
> >
> >
> > ------------------------------------------------------------------------------
> > Site24x7 APM Insight: Get Deep Visibility into Application Performance
> > APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month
> > Monitor end-to-end web transactions and take corrective actions now
> > Troubleshoot faster and improve end-user experience. Signup Now!
> > http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140_______________________________________________
> >  
> > <http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140_______________________________________________>
> > Scikit-learn-general mailing list
> > Scikit-learn-general@lists.sourceforge.net 
> > <mailto:Scikit-learn-general@lists.sourceforge.net>
> > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general 
> > <https://lists.sourceforge.net/lists/listinfo/scikit-learn-general>
> 
> 
> ------------------------------------------------------------------------------
> Site24x7 APM Insight: Get Deep Visibility into Application Performance
> APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month
> Monitor end-to-end web transactions and take corrective actions now
> Troubleshoot faster and improve end-user experience. Signup Now!
> http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140 
> <http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140>
> _______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net 
> <mailto:Scikit-learn-general@lists.sourceforge.net>
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general 
> <https://lists.sourceforge.net/lists/listinfo/scikit-learn-general>
> 
> 
> 
> ------------------------------------------------------------------------------
> Site24x7 APM Insight: Get Deep Visibility into Application Performance
> APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month
> Monitor end-to-end web transactions and take corrective actions now
> Troubleshoot faster and improve end-user experience. Signup Now!
> http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140_______________________________________________
> Scikit-learn-general mailing list
> Scikit-learn-general@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

------------------------------------------------------------------------------
Site24x7 APM Insight: Get Deep Visibility into Application Performance
APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month
Monitor end-to-end web transactions and take corrective actions now
Troubleshoot faster and improve end-user experience. Signup Now!
http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to