I guess I got it now! This behavior (see below) is indeed a bit strange: from sklearn.neighbors import NearestNeighbors import numpy as np
X = np.array([[1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0]]) def tan(x, y): print(y) return 1 nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree', metric=tan).fit(X) distances, indices = nbrs.kneighbors(X) [ 0.51786272 0.53042315 0.87815766 0.90239616 0.34253599 0.98631925 0.29768794 0.36593595 0.28956526 0.24720931] [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] It seems to be due to the partitioning via the ball tree algorithm; I am not sure if this is intended. It would be nice to get some feedback on this ... Switching to "brute" seems to return the expected results: from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0]]) def tan(x, y): print(y) return 1 nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric=tan).fit(X) distances, indices = nbrs.kneighbors(X) [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] [ 1. 1. 1. 1.] [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] > On Jan 12, 2016, at 8:45 PM, Herbert Schulz <hrbrt....@gmail.com> wrote: > > ps. > > • I printed the x,y array. And i thougtif these is the output: > [ 0.49178495 0.44239588 0.43451225 0.40576958 0.82022061 0.02921787 > 0.08832147 0.43397282 0.15083042 0.49916182] [ 0.49178495 0.44239588 > 0.43451225 0.40576958 0.82022061 0.02921787 > 0.08832147 0.43397282 0.15083042 0.49916182] > [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 0. 1. 1.] > [ 0.66666667 0.33333333 1. 0.66666667] [ 0. 0. 1. 0.] > [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 1. 1. 1.] > [ 1. 0. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 1. 0. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 0. 1. 1.] [ 1. 1. 1. 1.] > [ 0. 0. 1. 0.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 0. 0. 1. 0.] [ 1. 0. 1. 1.] > [ 0. 0. 1. 0.] [ 0. 0. 1. 0.] > [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] > [ 1. 1. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 1. 1. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 1. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 1. 1. 1.] [ 1. 1. 1. 1.] > > > > > > and we use the code: > > > > c=np.sum(x==y) > a1 = x[x == 1.0].shape[0] > b1 = y[y == 1.0].shape[0] > return float(c)/(a1 + b1 - c) > > the check > c=np.sum(x==y) > > > is not right or? I just want to compare > [ 1. 0. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] > > > > but not something like, which is also printed out from the tan(x,y) function. > > [ 0.66666667 0.33333333 1. 0.66666667] [ 1. 1. 1. 1.] > > > On 13 January 2016 at 02:33, Herbert Schulz <hrbrt....@gmail.com> wrote: > Sorry that i coudln't explained it very well > > I thought that > > > > > X = np.array([[1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, > 1.0]]) > > def tan(x, y): > > print x,y > > c=np.sum(x==y) > a1 = x[x == 1.0].shape[0] > b1 = y[y == 1.0].shape[0] > return float(c)/(a1 + b1 - c) > > example: > > [ 1. 0. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 1. 0. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 0. 1. 1.] [ 1. 1. 1. 1.] > [ 0. 0. 1. 0.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 0. 0. 1. 0.] [ 1. 0. 1. 1.] > [ 0. 0. 1. 0.] [ 0. 0. 1. 0.] > [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] > [ 1. 1. 1. 1.] [ 0.66666667 0.33333333 1. 0.66666667] > [ 1. 1. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 1. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 1. 1. 1.] [ 1. 1. 1. 1.] > > this is the output from x and y printed in the tan(x,y) function. > > #If I'm printing x and y in the tanimoto function, i should get something > like -----> > > [ 1. 0. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 0. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 0. 1. 1.] [ 1. 1. 1. 1.] > [ 0. 0. 1. 0.] [ 1. 0. 1. 1.] > [ 0. 0. 1. 0.] [ 0. 0. 1. 0.] > [ 0. 0. 1. 0.] [ 1. 1. 1. 1.] > [ 1. 1. 1. 1.] [ 1. 0. 1. 1.] > [ 1. 1. 1. 1.] [ 0. 0. 1. 0.] > [ 1. 1. 1. 1.] [ 1. 1. 1. 1.] > > without the array containing the floats like: [ 0.66666667 0.33333333 1. > 0.66666667] > > The problem is just, if I'm using the tanimoto metric, im getting bad > predictions... so realy bad like 0.0 accuracy, but maybe this is just an > another problem. I just thought, that im doing something wrong. And therefore > i printed x,y in the tanimoto function to check it. These float array just > confused me, due to may X_train array contains actually only 1's and 0's > > And does the (in my case) KNeighborsClassifier() use these distances > automatically if i pass the matrik=tanimoto? or should i calculate the > distance and give the array to the weights parameter. > > best, > > Herbert > > > > > > On 13 January 2016 at 01:55, Sebastian Raschka <se.rasc...@gmail.com> wrote: > Hi, Herbert, > sorry, but I am still a bit confused about what you are trying to accomplish > when you say > >> and the output is then what i mentioned >> >> x are only floats (0.573... ) and B are containing 1's and 0's like it should > > When I run it on a small test dataset ... > > > from sklearn.neighbors import NearestNeighbors > import numpy as np > > X = np.array([[1.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 0.0], [1.0, 1.0, 1.0, > 1.0]]) > > def tan(x, y): > c=np.sum(x==y) > a1 = x[x == 1.0].shape[0] > b1 = y[y == 1.0].shape[0] > return float(c)/(a1 + b1 - c) > > nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree', > metric=tan).fit(X) > distances, indices = nbrs.kneighbors(X) > distances > > I get > > array([[ 0.75], > [-2. ], > [ 0.25]]) > > > which is something I would expect given the function above!? > > Maybe you could give us a short excerpt of how your input array looks like > (e.g,. a 5x3 matrix or so) and what distances you'd expect to see. > > Best, > Sebastian > > > > >> On Jan 12, 2016, at 7:21 PM, Herbert Schulz <hrbrt....@gmail.com> wrote: >> >> Here is an example code, where the failure occurs. >> >> sorry for the big tests vector, couldn't show it otherwise. >> >> >> import numpy as np >> from sklearn.neighbors import NearestNeighbors >> >> >> def tanimoto(x,y): >> >> print "X OUTPUT\n ",x,"B OUTPUT\n",y >> >> c=np.sum(x==y) >> a1 = np.sum(x) >> b1 = np.sum(y) >> >> return float(c)/(a1 + b1 - c) >> >> tests=[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, >> 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, >> 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, >> 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, >> 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, >> 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, >> 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, >> 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, >> 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, >> 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, >> 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, >> 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, >> 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, >> 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, >> 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, >> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, >> 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, >> 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, >> 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, >> 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] >> >> classifiers=NearestNeighbors( n_neighbors=2,metric=tanimoto).fit(tests) >> >> >> >> >> and the output is then what i mentioned >> >> x are only floats (0.573... ) and B are containing 1's and 0's like it should >> >> best, >> ------------------------------------------------------------------------------ >> Site24x7 APM Insight: Get Deep Visibility into Application Performance >> APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month >> Monitor end-to-end web transactions and take corrective actions now >> Troubleshoot faster and improve end-user experience. Signup Now! >> http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140_______________________________________________ >> Scikit-learn-general mailing list >> Scikit-learn-general@lists.sourceforge.net >> https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > > > ------------------------------------------------------------------------------ > Site24x7 APM Insight: Get Deep Visibility into Application Performance > APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month > Monitor end-to-end web transactions and take corrective actions now > Troubleshoot faster and improve end-user experience. Signup Now! > http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140 > _______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general > > > > ------------------------------------------------------------------------------ > Site24x7 APM Insight: Get Deep Visibility into Application Performance > APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month > Monitor end-to-end web transactions and take corrective actions now > Troubleshoot faster and improve end-user experience. Signup Now! > http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140_______________________________________________ > Scikit-learn-general mailing list > Scikit-learn-general@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/scikit-learn-general ------------------------------------------------------------------------------ Site24x7 APM Insight: Get Deep Visibility into Application Performance APM + Mobile APM + RUM: Monitor 3 App instances at just $35/Month Monitor end-to-end web transactions and take corrective actions now Troubleshoot faster and improve end-user experience. Signup Now! http://pubads.g.doubleclick.net/gampad/clk?id=267308311&iu=/4140 _______________________________________________ Scikit-learn-general mailing list Scikit-learn-general@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/scikit-learn-general