Thank you for the answer.
I also thought about ShuffleSplit (n_splits=1), but I need to control which indices are used for training and which for testing in the nested folds. The problem is that I did feature selection before hyperparameters optimization (with a nested Leave One Out schema) and now I need the same partitioning for hyperparameters optimization. The reason why I did this is that the feature selection step is incredibly slow, I hope I can get rid of that step in the permutation test. Is not clear to me if I have to include feature selection in the permutation test as well. Maybe LeavePOut is what I need. Best Ludovico ________________________________ Da: scikit-learn <scikit-learn-bounces+ludo25_90=hotmail....@python.org> per conto di scikit-learn-requ...@python.org <scikit-learn-requ...@python.org> Inviato: mercoledì 7 dicembre 2016 17.48 A: scikit-learn@python.org Oggetto: scikit-learn Digest, Vol 9, Issue 22 Send scikit-learn mailing list submissions to scikit-learn@python.org To subscribe or unsubscribe via the World Wide Web, visit https://mail.python.org/mailman/listinfo/scikit-learn scikit-learn Info Page - Python<https://mail.python.org/mailman/listinfo/scikit-learn> mail.python.org To see the collection of prior postings to the list, visit the scikit-learn Archives. Using scikit-learn: To post a message to all the list members ... or, via email, send a message with subject or body 'help' to scikit-learn-requ...@python.org You can reach the person managing the list at scikit-learn-ow...@python.org When replying, please edit your Subject line so it is more specific than "Re: Contents of scikit-learn digest..." Today's Topics: 1. Re: New to scikit (Andreas Mueller) 2. Re: Nested Leave One Subject Out (LOSO) cross validation with scikit (Andreas Mueller) 3. return type of StandardScaler (Nilay Shrivastava) 4. Re: return type of StandardScaler (Bharat Didwania .) ---------------------------------------------------------------------- Message: 1 Date: Wed, 7 Dec 2016 11:33:38 -0500 From: Andreas Mueller <t3k...@gmail.com> To: Scikit-learn user and developer mailing list <scikit-learn@python.org> Subject: Re: [scikit-learn] New to scikit Message-ID: <f1d5d579-0646-d05d-4bde-9d44c34ec...@gmail.com> Content-Type: text/plain; charset="windows-1252"; Format="flowed" http://scikit-learn.org/dev/developers/contributing.html#deprecation On 12/07/2016 09:42 AM, Chinmay Talegaonkar wrote: > Yeah, I found an easy bug. Looking for some help in writing > deprecation cycles for a bug. > > On Wed, Dec 7, 2016 at 8:05 PM, Siddharth Gupta > <siddharthgupta...@gmail.com <mailto:siddharthgupta...@gmail.com>> wrote: > > Great! Welcome to the community. I would suggest you to check out > the issues page on the github repo, raise hand to the issues you > feel like you can give a go to, check out the issues that are > tagged as require contributor. Issues are a good way to start, > they will direct you about the areas of the code base to explore. > > On Dec 7, 2016 6:02 PM, "Chinmay Talegaonkar" > <chinmay0...@gmail.com <mailto:chinmay0...@gmail.com>> wrote: > > Hi everyone, > I have a prior experience in python, and > have started learning machine learning recently. I wanted to > contribute to scikit, can anyone suggest a relatively easy > codebase to explore. > Thanks in advance! > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org <mailto:scikit-learn@python.org> > https://mail.python.org/mailman/listinfo/scikit-learn > <https://mail.python.org/mailman/listinfo/scikit-learn> > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org <mailto:scikit-learn@python.org> > https://mail.python.org/mailman/listinfo/scikit-learn > <https://mail.python.org/mailman/listinfo/scikit-learn> > > > > > -- > -- > *Chinmay Talegaonkar* > Cultural and Events Coordinator, Mood Indigo > .............................................. > > > +91-8879178724 > chinmay0...@gmail.com <mailto:bajajkshiti...@gmail.com> > www.moodi.org<http://www.moodi.org> <http://www.moodi.org/> > > > > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/4f86464e/attachment-0001.html> ------------------------------ Message: 2 Date: Wed, 7 Dec 2016 11:33:00 -0500 From: Andreas Mueller <t3k...@gmail.com> To: Scikit-learn user and developer mailing list <scikit-learn@python.org> Subject: Re: [scikit-learn] Nested Leave One Subject Out (LOSO) cross validation with scikit Message-ID: <e9e342f5-d09b-92b7-e304-a0bfa37ae...@gmail.com> Content-Type: text/plain; charset="windows-1252"; Format="flowed" On 12/07/2016 07:41 AM, Ludovico Coletta wrote: > > Dear scikit experts, > > > I did as you suggested, but it is not exactly what I would like to do > ( I also read this: > http://stackoverflow.com/questions/40400351/nested-cross-validation-with-stratifiedshufflesplit-in-sklearn) > > Perhaps I should ask my question in another way: it is possible to > split the nested cv folds just once? It seems to me that this is not > possible, do you have any hints? > > Not sure I understand your question. You can do a single split by using ShuffleSplit(n_splits=1) for example. -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/063e6a44/attachment-0001.html> ------------------------------ Message: 3 Date: Wed, 7 Dec 2016 22:14:18 +0530 From: Nilay Shrivastava <nilay.eule...@gmail.com> To: scikit-learn@python.org Subject: [scikit-learn] return type of StandardScaler Message-ID: <caklfaqra_qgdyprddtg58nhybqurwbct2_2nzkzriomww5r...@mail.gmail.com> Content-Type: text/plain; charset="utf-8" StandardScaler returns numpy array even if the object passed is a pandas dataframe, shouldn't it return a dataframe? -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/feecd6be/attachment-0001.html> ------------------------------ Message: 4 Date: Wed, 7 Dec 2016 08:48:47 -0800 From: "Bharat Didwania ." <bharat.didwania.ee...@itbhu.ac.in> To: Scikit-learn user and developer mailing list <scikit-learn@python.org> Subject: Re: [scikit-learn] return type of StandardScaler Message-ID: <caa3g_m_jqwalgkqa530vp5pshdry+mcwqiuts5qhdv-ejtc...@mail.gmail.com> Content-Type: text/plain; charset="utf-8" you can use pandas.get_dummies() <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html>. It will perform one hot encoding on categorical columns, and produce a dataframe as the result. From there you can use pandas.concat([existing_df, new_df],axis=0) to add the new columns to your existing dataframe. This will avoid the use of a numpy array. On Wed, Dec 7, 2016 at 8:44 AM, Nilay Shrivastava <nilay.eule...@gmail.com> wrote: > StandardScaler returns numpy array even if the object passed is a pandas > dataframe, shouldn't it return a dataframe? > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/d6afb4d5/attachment.html> ------------------------------ Subject: Digest Footer _______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn ------------------------------ End of scikit-learn Digest, Vol 9, Issue 22 *******************************************
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn