Thank you for the good news! [😊]
Best Ludovico ________________________________ Da: scikit-learn <scikit-learn-bounces+ludo25_90=hotmail....@python.org> per conto di scikit-learn-requ...@python.org <scikit-learn-requ...@python.org> Inviato: mercoledì 7 dicembre 2016 22.06 A: scikit-learn@python.org Oggetto: scikit-learn Digest, Vol 9, Issue 24 Send scikit-learn mailing list submissions to scikit-learn@python.org To subscribe or unsubscribe via the World Wide Web, visit https://mail.python.org/mailman/listinfo/scikit-learn scikit-learn Info Page - Python<https://mail.python.org/mailman/listinfo/scikit-learn> mail.python.org To see the collection of prior postings to the list, visit the scikit-learn Archives. Using scikit-learn: To post a message to all the list members ... or, via email, send a message with subject or body 'help' to scikit-learn-requ...@python.org You can reach the person managing the list at scikit-learn-ow...@python.org When replying, please edit your Subject line so it is more specific than "Re: Contents of scikit-learn digest..." Today's Topics: 1. Re: Nested Leave One Subject Out (LOSO) cross validation with scikit (Andreas Mueller) ---------------------------------------------------------------------- Message: 1 Date: Wed, 7 Dec 2016 16:06:29 -0500 From: Andreas Mueller <t3k...@gmail.com> To: Scikit-learn user and developer mailing list <scikit-learn@python.org> Subject: Re: [scikit-learn] Nested Leave One Subject Out (LOSO) cross validation with scikit Message-ID: <e3971a8a-a4eb-2536-4e78-95edd2fec...@gmail.com> Content-Type: text/plain; charset="windows-1252"; Format="flowed" PredefinedSplit allows to define your split but I think it's better if you look at this pr: https://github.com/scikit-learn/scikit-learn/pull/7990 [https://avatars2.githubusercontent.com/u/7454015?v=3&s=400]<https://github.com/scikit-learn/scikit-learn/pull/7990> [WIP] Cache pipeline by glemaitre · Pull Request #7990 · scikit-learn/scikit-learn<https://github.com/scikit-learn/scikit-learn/pull/7990> github.com Reference Issue Address the discussions in #3951 Other related issues and PR: #2086 #5082 #5080 What does this implement/fix? Explain your changes. It implements a version of Pipeline which allows ... That allows you to cache steps in a pipeline so you don't have to recompute the feature selection for each parameter. On 12/07/2016 03:13 PM, Ludovico Coletta wrote: > > Thank you for the answer. > > > I also thought about ShuffleSplit (n_splits=1), but I need to control > which indices are used for training and which for testing in the > nested folds. The problem is that I did feature selection before > hyperparameters optimization (with a nested Leave One Out schema) and > now I need the same partitioning for hyperparameters optimization. The > reason why I did this is that the feature selection step is incredibly > slow, I hope I can get rid of that step in the permutation test. Is > not clear to me if I have to include feature selection in the > permutation test as well. > > > Maybe LeavePOut is what I need. > > > Best > > Ludovico > > > > ------------------------------------------------------------------------ > *Da:* scikit-learn > <scikit-learn-bounces+ludo25_90=hotmail....@python.org> per conto di > scikit-learn-requ...@python.org <scikit-learn-requ...@python.org> > *Inviato:* mercoled? 7 dicembre 2016 17.48 > *A:* scikit-learn@python.org > *Oggetto:* scikit-learn Digest, Vol 9, Issue 22 > Send scikit-learn mailing list submissions to > scikit-learn@python.org > > To subscribe or unsubscribe via the World Wide Web, visit > https://mail.python.org/mailman/listinfo/scikit-learn scikit-learn Info Page - Python<https://mail.python.org/mailman/listinfo/scikit-learn> mail.python.org To see the collection of prior postings to the list, visit the scikit-learn Archives. Using scikit-learn: To post a message to all the list members ... > <https://mail.python.org/mailman/listinfo/scikit-learn> scikit-learn Info Page - Python<https://mail.python.org/mailman/listinfo/scikit-learn> mail.python.org To see the collection of prior postings to the list, visit the scikit-learn Archives. Using scikit-learn: To post a message to all the list members ... > scikit-learn Info Page - Python > <https://mail.python.org/mailman/listinfo/scikit-learn> scikit-learn Info Page - Python<https://mail.python.org/mailman/listinfo/scikit-learn> mail.python.org To see the collection of prior postings to the list, visit the scikit-learn Archives. Using scikit-learn: To post a message to all the list members ... > mail.python.org > To see the collection of prior postings to the list, visit the > scikit-learn Archives. Using scikit-learn: To post a message to all > the list members ... > > > > or, via email, send a message with subject or body 'help' to > scikit-learn-requ...@python.org > > You can reach the person managing the list at > scikit-learn-ow...@python.org > > When replying, please edit your Subject line so it is more specific > than "Re: Contents of scikit-learn digest..." > > > Today's Topics: > > 1. Re: New to scikit (Andreas Mueller) > 2. Re: Nested Leave One Subject Out (LOSO) cross validation with > scikit (Andreas Mueller) > 3. return type of StandardScaler (Nilay Shrivastava) > 4. Re: return type of StandardScaler (Bharat Didwania .) > > > ---------------------------------------------------------------------- > > Message: 1 > Date: Wed, 7 Dec 2016 11:33:38 -0500 > From: Andreas Mueller <t3k...@gmail.com> > To: Scikit-learn user and developer mailing list > <scikit-learn@python.org> > Subject: Re: [scikit-learn] New to scikit > Message-ID: <f1d5d579-0646-d05d-4bde-9d44c34ec...@gmail.com> > Content-Type: text/plain; charset="windows-1252"; Format="flowed" > > http://scikit-learn.org/dev/developers/contributing.html#deprecation > > On 12/07/2016 09:42 AM, Chinmay Talegaonkar wrote: > > Yeah, I found an easy bug. Looking for some help in writing > > deprecation cycles for a bug. > > > > On Wed, Dec 7, 2016 at 8:05 PM, Siddharth Gupta > > <siddharthgupta...@gmail.com <mailto:siddharthgupta...@gmail.com>> > wrote: > > > > Great! Welcome to the community. I would suggest you to check out > > the issues page on the github repo, raise hand to the issues you > > feel like you can give a go to, check out the issues that are > > tagged as require contributor. Issues are a good way to start, > > they will direct you about the areas of the code base to explore. > > > > On Dec 7, 2016 6:02 PM, "Chinmay Talegaonkar" > > <chinmay0...@gmail.com <mailto:chinmay0...@gmail.com>> wrote: > > > > Hi everyone, > > I have a prior experience in python, and > > have started learning machine learning recently. I wanted to > > contribute to scikit, can anyone suggest a relatively easy > > codebase to explore. > > Thanks in advance! > > > > > > _______________________________________________ > > scikit-learn mailing list > > scikit-learn@python.org <mailto:scikit-learn@python.org> > > https://mail.python.org/mailman/listinfo/scikit-learn > > <https://mail.python.org/mailman/listinfo/scikit-learn> > > > > > > _______________________________________________ > > scikit-learn mailing list > > scikit-learn@python.org <mailto:scikit-learn@python.org> > > https://mail.python.org/mailman/listinfo/scikit-learn > > <https://mail.python.org/mailman/listinfo/scikit-learn> > > > > > > > > > > -- > > -- > > *Chinmay Talegaonkar* > > Cultural and Events Coordinator, Mood Indigo > > .............................................. > > > > > > +91-8879178724 > > chinmay0...@gmail.com <mailto:bajajkshiti...@gmail.com> > > www.moodi.org<http://www.moodi.org> <http://www.moodi.org> > > <http://www.moodi.org/> > > > > > > > > > > > > _______________________________________________ > > scikit-learn mailing list > > scikit-learn@python.org > > https://mail.python.org/mailman/listinfo/scikit-learn > > -------------- next part -------------- > An HTML attachment was scrubbed... > URL: > <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/4f86464e/attachment-0001.html> > > ------------------------------ > > Message: 2 > Date: Wed, 7 Dec 2016 11:33:00 -0500 > From: Andreas Mueller <t3k...@gmail.com> > To: Scikit-learn user and developer mailing list > <scikit-learn@python.org> > Subject: Re: [scikit-learn] Nested Leave One Subject Out (LOSO) cross > validation with scikit > Message-ID: <e9e342f5-d09b-92b7-e304-a0bfa37ae...@gmail.com> > Content-Type: text/plain; charset="windows-1252"; Format="flowed" > > > > On 12/07/2016 07:41 AM, Ludovico Coletta wrote: > > > > Dear scikit experts, > > > > > > I did as you suggested, but it is not exactly what I would like to do > > ( I also read this: > > > http://stackoverflow.com/questions/40400351/nested-cross-validation-with-stratifiedshufflesplit-in-sklearn) > > > > Perhaps I should ask my question in another way: it is possible to > > split the nested cv folds just once? It seems to me that this is not > > possible, do you have any hints? > > > > > Not sure I understand your question. > You can do a single split by using ShuffleSplit(n_splits=1) for example. > -------------- next part -------------- > An HTML attachment was scrubbed... > URL: > <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/063e6a44/attachment-0001.html> > > ------------------------------ > > Message: 3 > Date: Wed, 7 Dec 2016 22:14:18 +0530 > From: Nilay Shrivastava <nilay.eule...@gmail.com> > To: scikit-learn@python.org > Subject: [scikit-learn] return type of StandardScaler > Message-ID: > <caklfaqra_qgdyprddtg58nhybqurwbct2_2nzkzriomww5r...@mail.gmail.com> > Content-Type: text/plain; charset="utf-8" > > StandardScaler returns numpy array even if the object passed is a pandas > dataframe, shouldn't it return a dataframe? > -------------- next part -------------- > An HTML attachment was scrubbed... > URL: > <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/feecd6be/attachment-0001.html> > > ------------------------------ > > Message: 4 > Date: Wed, 7 Dec 2016 08:48:47 -0800 > From: "Bharat Didwania ." <bharat.didwania.ee...@itbhu.ac.in> > To: Scikit-learn user and developer mailing list > <scikit-learn@python.org> > Subject: Re: [scikit-learn] return type of StandardScaler > Message-ID: > <caa3g_m_jqwalgkqa530vp5pshdry+mcwqiuts5qhdv-ejtc...@mail.gmail.com> > Content-Type: text/plain; charset="utf-8" > > you can use pandas.get_dummies() > <http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html>. > It will perform one hot encoding on categorical columns, and produce a > dataframe as the result. From there you can use > pandas.concat([existing_df, > new_df],axis=0) to add the new columns to your existing dataframe. This > will avoid the use of a numpy array. > > > On Wed, Dec 7, 2016 at 8:44 AM, Nilay Shrivastava > <nilay.eule...@gmail.com> > wrote: > > > StandardScaler returns numpy array even if the object passed is a pandas > > dataframe, shouldn't it return a dataframe? > > > > > > _______________________________________________ > > scikit-learn mailing list > > scikit-learn@python.org > > https://mail.python.org/mailman/listinfo/scikit-learn > > > > > -------------- next part -------------- > An HTML attachment was scrubbed... > URL: > <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/d6afb4d5/attachment.html> > > ------------------------------ > > Subject: Digest Footer > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > > ------------------------------ > > End of scikit-learn Digest, Vol 9, Issue 22 > ******************************************* > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161207/8e3450c9/attachment.html> ------------------------------ Subject: Digest Footer _______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn ------------------------------ End of scikit-learn Digest, Vol 9, Issue 24 *******************************************
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn