Hi Thomas,

the doc says, that nu gives an upper bound on the fraction of training errors 
and a lower bound of the fractions
of support vectors.
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html

Therefore, it acts as a hard bound on the allowed misclassification on your 
dataset.

To me it seems as if the error bound is not feasible.
How well did the SVC perform? What was your training error there?

Will the NuSVC converge when you skip the sample_weights?


Greets,
Piotr

On 08.12.2016 00:07, Thomas Evangelidis wrote:
Greetings,

I want  to  use the Nu-Support Vector Classifier with the following input data:

X= [
array([  3.90387012,   1.60732281,  -0.33315799,   4.02770896,
         1.82337731,  -0.74007214,   6.75989219,   3.68538903,
         ..................
         0.        ,  11.64276776,   0.        ,   0.        ]),
array([  3.36856769e+00,   1.48705816e+00,   4.28566992e-01,
         3.35622071e+00,   1.64046508e+00,   5.66879661e-01,
         .....................
         4.25335335e+00,   1.96508829e+00,   8.63453394e-06]),
 array([  3.74986249e+00,   1.69060713e+00,  -5.09921270e-01,
         3.76320781e+00,   1.67664455e+00,  -6.21126735e-01,
         ..........................
         4.16700259e+00,   1.88688784e+00,   7.34729942e-06]),
.......
]

and

Y=  [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
............................
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0]


​Each array of X contains 60 numbers and the dataset consists of 48 positive 
and 1230 negative observations. When I train an svm.SVC() classifier I get 
quite good predictions, but wit the ​svm.NuSVC​() I keep getting the following 
error no matter which value of nu in [0.1, ..., 0.9, 0.99, 0.999, 0.9999] I try:
/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.pyc in fit(self, X, y, 
sample_weight)
    187
    188         seed = rnd.randint(np.iinfo('i').max)
--> 189         fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
    190         # see comment on the other call to np.iinfo in this file
    191
/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.pyc in _dense_fit(self, 
X, y, sample_weight, solver_type, kernel, random_seed)
    254                 cache_size=self.cache_size, coef0=self.coef0,
    255                 gamma=self._gamma, epsilon=self.epsilon,
--> 256                 max_iter=self.max_iter, random_seed=random_seed)
    257
    258         self._warn_from_fit_status()
/usr/local/lib/python2.7/dist-packages/sklearn/svm/libsvm.so in 
sklearn.svm.libsvm.fit (sklearn/svm/libsvm.c:2501)()
ValueError: specified nu is infeasible

​
​Does anyone know what might be wrong? Could it be the input data?

thanks in advance for any advice
Thomas​



--

======================================================================

Thomas Evangelidis

Research Specialist

CEITEC - Central European Institute of Technology
Masaryk University
Kamenice 5/A35/1S081,
62500 Brno, Czech Republic


email: [email protected]<mailto:[email protected]>

          [email protected]<mailto:[email protected]>

website: https://sites.google.com/site/thomasevangelidishomepage/




_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn


_______________________________________________
scikit-learn mailing list
[email protected]
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to