Hi Michael, hi Thomas,
I think the nu value is bound to (0, 1].
So the code will result in a ValueError (at least in sklearn 0.18).
@Thomas
I still think the optimization problem is not feasible due to your data.
Have you tried balancing the dataset as I mentioned in your other question
regarding the MLPClassifier?
Greets,
Piotr
On 08.12.2016 10:57, Michael Eickenberg wrote:
You have to set a bigger \nu.
Try
nus =2 ** np.arange(-1, 10) # starting at .5 (default), going to 512
for nu in nus:
clf = svm.NuSVC(nu=nu)
try:
clf.fit ...
except ValueError as e:
print("nu {} not feasible".format(nu))
At some point it should start working.
Hope that helps,
Michael
On Thu, Dec 8, 2016 at 10:49 AM, Thomas Evangelidis
<[email protected]<mailto:[email protected]>> wrote:
Hi Piotr,
the SVC performs quite well, slightly better than random forests on the same
data. By training error do you mean this?
clf = svm.SVC(probability=True)
clf.fit(train_list_resampled3, train_activity_list_resampled3)
print "training error=", clf.score(train_list_resampled3,
train_activity_list_resampled3)
If this is what you mean by "skip the sample_weights":
clf = svm.NuSVC(probability=True)
clf.fit(train_list_resampled3, train_activity_list_resampled3,
sample_weight=None)
then no, it does not converge. After all "sample_weight=None" is the default
value.
I am out of ideas about what may be the problem.
Thomas
On 8 December 2016 at 08:56, Piotr Bialecki
<<mailto:[email protected]>[email protected]<mailto:[email protected]>>
wrote:
Hi Thomas,
the doc says, that nu gives an upper bound on the fraction of training errors
and a lower bound of the fractions
of support vectors.
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html
Therefore, it acts as a hard bound on the allowed misclassification on your
dataset.
To me it seems as if the error bound is not feasible.
How well did the SVC perform? What was your training error there?
Will the NuSVC converge when you skip the sample_weights?
Greets,
Piotr
On 08.12.2016 00:07, Thomas Evangelidis wrote:
Greetings,
I want to use the Nu-Support Vector Classifier with the following input data:
X= [
array([ 3.90387012, 1.60732281, -0.33315799, 4.02770896,
1.82337731, -0.74007214, 6.75989219, 3.68538903,
..................
0. , 11.64276776, 0. , 0. ]),
array([ 3.36856769e+00, 1.48705816e+00, 4.28566992e-01,
3.35622071e+00, 1.64046508e+00, 5.66879661e-01,
.....................
4.25335335e+00, 1.96508829e+00, 8.63453394e-06]),
array([ 3.74986249e+00, 1.69060713e+00, -5.09921270e-01,
3.76320781e+00, 1.67664455e+00, -6.21126735e-01,
..........................
4.16700259e+00, 1.88688784e+00, 7.34729942e-06]),
.......
]
and
Y= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
............................
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]
Each array of X contains 60 numbers and the dataset consists of 48 positive
and 1230 negative observations. When I train an svm.SVC() classifier I get
quite good predictions, but wit the svm.NuSVC() I keep getting the following
error no matter which value of nu in [0.1, ..., 0.9, 0.99, 0.999, 0.9999] I try:
/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.pyc in fit(self, X, y,
sample_weight)
187
188 seed = rnd.randint(np.iinfo('i').max)
--> 189 fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
190 # see comment on the other call to np.iinfo in this file
191
/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.pyc in _dense_fit(self,
X, y, sample_weight, solver_type, kernel, random_seed)
254 cache_size=self.cache_size, coef0=self.coef0,
255 gamma=self._gamma, epsilon=self.epsilon,
--> 256 max_iter=self.max_iter, random_seed=random_seed)
257
258 self._warn_from_fit_status()
/usr/local/lib/python2.7/dist-packages/sklearn/svm/libsvm.so in
sklearn.svm.libsvm.fit (sklearn/svm/libsvm.c:2501)()
ValueError: specified nu is infeasible
Does anyone know what might be wrong? Could it be the input data?
thanks in advance for any advice
Thomas
--
======================================================================
Thomas Evangelidis
Research Specialist
CEITEC - Central European Institute of Technology
Masaryk University
Kamenice 5/A35/1S081,
62500 Brno, Czech Republic
email: [email protected]<mailto:[email protected]>
[email protected]<mailto:[email protected]>
website: <https://sites.google.com/site/thomasevangelidishomepage/>
https://sites.google.com/site/thomasevangelidishomepage/
_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn
_______________________________________________ scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn
--
======================================================================
Thomas Evangelidis
Research Specialist
CEITEC - Central European Institute of Technology Masaryk University Kamenice
5/A35/1S081, 62500 Brno, Czech Republic
email: [email protected]<mailto:[email protected]>
[email protected]<mailto:[email protected]>
website: https://sites.google.com/site/thomasevangelidishomepage/
_______________________________________________ scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn
_______________________________________________
scikit-learn mailing list
[email protected]<mailto:[email protected]>
https://mail.python.org/mailman/listinfo/scikit-learn
_______________________________________________
scikit-learn mailing list
[email protected]
https://mail.python.org/mailman/listinfo/scikit-learn