Hi Piotr, Yes, I did use n_jobs = - 1 as well. But the code didn't run successfully. On my output screen , I got the following message instead of the JobLibMemoryError:
16/12/08 22:12:26 INFO YarnExtensionServices: In shutdown hook for org.apache.spark.scheduler.cluster.YarnExtensionServices$$anon$1@176b071d 16/12/08 22:12:26 INFO YarnHistoryService: Shutting down: pushing out 0 events 16/12/08 22:12:26 INFO YarnHistoryService: Event handler thread stopping the service 16/12/08 22:12:26 INFO YarnHistoryService: Stopping dequeue service, final queue size is 0 16/12/08 22:12:26 INFO YarnHistoryService: Stopped: Service History Service in state History Service: STOPPED endpoint= <https://w3-01.ibm.com/tools/forms/ica/icaroute.nsf/bysrcall/ica201612786?OpenDocument> http://servername.com:8188/ws/v1/timeline/ <http://toplxhdmp001.rails.rwy.bnsf.com:8188/ws/v1/timeline/>; bonded to ATS=false; listening=true; batchSize=3; flush count=17; current queue size=0; total number queued=52, processed=50; post failures=0; 16/12/08 22:12:26 INFO SparkContext: Invoking stop() from shutdown hook 16/12/08 22:12:26 INFO YarnHistoryService: History service stopped; ignoring queued event : [1481256746854]: SparkListenerApplicationEnd( 1481256746854) Just to get you a background I am executing the scikit-learn Random Classifier using pyspark command. I am not getting what has gone wrong while using n_jobs = -1 and suddenly the program is shutting down certain services. Please can you suggest a remedy as I have been given the task to run this via pyspark itself. Thanks in advance ! Cheers, Debu On Fri, Dec 9, 2016 at 2:48 PM, Piotr Bialecki <piotr.biale...@hotmail.de> wrote: > Hi Debu, > > it seems that you run out of memory. > Try using fewer processes. > I don't think that n_jobs = 1000 will perform as you wish. > > Setting n_jobs to -1 uses the number of cores in your system. > > > Greets, > Piotr > > > On 09.12.2016 08:16, Debabrata Ghosh wrote: > > Hi All, > > Greetings ! > > > > I am getting JoblibMemoryError while executing a scikit-learn > RandomForestClassifier code. Here is my algorithm in short: > > > > from sklearn.ensemble import RandomForestClassifier > > from sklearn.cross_validation import train_test_split > > import pandas as pd > > import numpy as np > > clf = RandomForestClassifier(n_estimators=5000, n_jobs=1000) > > clf.fit(p_input_features_train,p_input_labels_train) > > > The dataframe p_input_features contain 134 columns (features) and 5 > million rows (observations). The exact *error message* is given below: > > > Executing Random Forest Classifier > Traceback (most recent call last): > File "/home/user/rf_fold.py", line 43, in <module> > clf.fit(p_features_train,p_labels_train) > File "/var/opt/ lib/python2.7/site-packages/sklearn/ensemble/forest.py", > line 290, in fit > for i, t in enumerate(trees)) > File > "/var/opt/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", > line 810, in __call__ > self.retrieve() > File "/var/opt/lib > /python2.7/site-packages/sklearn/externals/joblib/parallel.py", > line 757, in retrieve > raise exception > sklearn.externals.joblib.my_exceptions.JoblibMemoryError: > JoblibMemoryError > ____________________________________________________________ > _______________ > Multiprocessing exception: > ............................................................ > ............... > > /var/opt/lib/python2.7/site-packages/sklearn/ensemble/forest.py in > fit(self=RandomForestClassifier(bootstrap=True, class_wei...te=None, > verbose=0, > warm_start=False), X=array([[ 0. , 0. , > 0. , .... 0. , 0. ]], dtype=float32), > y=array([[ 0.], > [ 0.], > [ 0.], > ..., > [ 0.], > [ 0.], > [ 0.]]), sample_weight=None) > 285 trees = Parallel(n_jobs=self.n_jobs, > verbose=self.verbose, > 286 backend="threading")( > 287 delayed(_parallel_build_trees)( > 288 t, self, X, y, sample_weight, i, len(trees), > 289 verbose=self.verbose, class_weight=self.class_ > weight) > --> 290 for i, t in enumerate(trees)) > i = 4999 > 291 > 292 # Collect newly grown trees > 293 self.estimators_.extend(trees) > 294 > > ............................................................ > ............... > > > > Please can you help me to identify a possible resolution to this. > > > Thanks, > > Debu > > > _______________________________________________ > scikit-learn mailing > listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn > > > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn