Hi Debu, I have not worked with pyspark yet and cannot resolve your error, but have you tried out sparkit-learn? https://github.com/lensacom/sparkit-learn
It seems to be a package combining pyspark with sklearn and it also has a RandomForest and other classifiers: (SparkRandomForestClassifier, https://github.com/lensacom/sparkit-learn/blob/master/splearn/ensemble/__init__.py) Greets, Piotr On 09.12.2016 10:56, Debabrata Ghosh wrote: Hi Piotr, Yes, I did use n_jobs = - 1 as well. But the code didn't run successfully. On my output screen , I got the following message instead of the JobLibMemoryError: 16/12/08 22:12:26 INFO YarnExtensionServices: In shutdown hook for org.apache.spark.scheduler.cluster.YarnExtensionServices$$anon$1@176b071d 16/12/08 22:12:26 INFO YarnHistoryService: Shutting down: pushing out 0 events 16/12/08 22:12:26 INFO YarnHistoryService: Event handler thread stopping the service 16/12/08 22:12:26 INFO YarnHistoryService: Stopping dequeue service, final queue size is 0 16/12/08 22:12:26 INFO YarnHistoryService: Stopped: Service History Service in state History Service: STOPPED endpoint=<https://w3-01.ibm.com/tools/forms/ica/icaroute.nsf/bysrcall/ica201612786?OpenDocument>http://servername.com:8188/ws/v1/timeline/<http://toplxhdmp001.rails.rwy.bnsf.com:8188/ws/v1/timeline/>; bonded to ATS=false; listening=true; batchSize=3; flush count=17; current queue size=0; total number queued=52, processed=50; post failures=0; 16/12/08 22:12:26 INFO SparkContext: Invoking stop() from shutdown hook 16/12/08 22:12:26 INFO YarnHistoryService: History service stopped; ignoring queued event : [1481256746854]: SparkListenerApplicationEnd(1481256746854) Just to get you a background I am executing the scikit-learn Random Classifier using pyspark command. I am not getting what has gone wrong while using n_jobs = -1 and suddenly the program is shutting down certain services. Please can you suggest a remedy as I have been given the task to run this via pyspark itself. Thanks in advance ! Cheers, Debu On Fri, Dec 9, 2016 at 2:48 PM, Piotr Bialecki <piotr.biale...@hotmail.de<mailto:piotr.biale...@hotmail.de>> wrote: Hi Debu, it seems that you run out of memory. Try using fewer processes. I don't think that n_jobs = 1000 will perform as you wish. Setting n_jobs to -1 uses the number of cores in your system. Greets, Piotr On 09.12.2016 08:16, Debabrata Ghosh wrote: Hi All, Greetings ! I am getting JoblibMemoryError while executing a scikit-learn RandomForestClassifier code. Here is my algorithm in short: from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split import pandas as pd import numpy as np clf = RandomForestClassifier(n_estimators=5000, n_jobs=1000) clf.fit(p_input_features_train,p_input_labels_train) The dataframe p_input_features contain 134 columns (features) and 5 million rows (observations). The exact error message is given below: Executing Random Forest Classifier Traceback (most recent call last): File "/home/user/rf_fold.py", line 43, in <module> clf.fit(p_features_train,p_labels_train) File "/var/opt/ lib/python2.7/site-packages/sklearn/ensemble/forest.py", line 290, in fit for i, t in enumerate(trees)) File "/var/opt/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 810, in __call__ self.retrieve() File "/var/opt/lib /python2.7/site-packages/sklearn/externals/joblib/parallel.py", line 757, in retrieve raise exception sklearn.externals.joblib.my_exceptions.JoblibMemoryError: JoblibMemoryError ___________________________________________________________________________ Multiprocessing exception: ........................................................................... /var/opt/lib/python2.7/site-packages/sklearn/ensemble/forest.py in fit(self=RandomForestClassifier(bootstrap=True, class_wei...te=None, verbose=0, warm_start=False), X=array([[ 0. , 0. , 0. , .... 0. , 0. ]], dtype=float32), y=array([[ 0.], [ 0.], [ 0.], ..., [ 0.], [ 0.], [ 0.]]), sample_weight=None) 285 trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, 286 backend="threading")( 287 delayed(_parallel_build_trees)( 288 t, self, X, y, sample_weight, i, len(trees), 289 verbose=self.verbose, class_weight=self.class_weight) --> 290 for i, t in enumerate(trees)) i = 4999 291 292 # Collect newly grown trees 293 self.estimators_.extend(trees) 294 ........................................................................... Please can you help me to identify a possible resolution to this. Thanks, Debu _______________________________________________ scikit-learn mailing list scikit-learn@python.org<mailto:scikit-learn@python.org> https://mail.python.org/mailman/listinfo/scikit-learn _______________________________________________ scikit-learn mailing list scikit-learn@python.org<mailto:scikit-learn@python.org> https://mail.python.org/mailman/listinfo/scikit-learn _______________________________________________ scikit-learn mailing list scikit-learn@python.org<mailto:scikit-learn@python.org> https://mail.python.org/mailman/listinfo/scikit-learn
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn