Hi, Shuchi, regarding labels_true: you’d only be able to compute the rand index adjusted for chance if you have the ground truth labels iof the training examples in your dataset.
The second parameter, labels_pred, takes in the predicted cluster labels (indices) that you got from the clustering. E.g, dbscn = DBSCAN() labels_pred = dbscn.fit(X).predict(X) Best, Sebastian > On Mar 31, 2017, at 12:02 AM, Shuchi Mala <shuchi...@gmail.com> wrote: > > Thank you so much for your quick reply. I have one more doubt. The below > statement is used to calculate rand score. > > metrics.adjusted_rand_score(labels_true, labels_pred) > In my case what will be labels_true and labels_pred and how I will calculate > labels_pred? > > With Best Regards, > Shuchi Mala > Research Scholar > Department of Civil Engineering > MNIT Jaipur > > > On Thu, Mar 30, 2017 at 8:38 PM, Shane Grigsby <shane.grig...@colorado.edu> > wrote: > Since you're using lat / long coords, you'll also want to convert them to > radians and specify 'haversine' as your distance metric; i.e. : > > coords = np.vstack([lats.ravel(),longs.ravel()]).T > coords *= np.pi / 180. # to radians > > ...and: > > db = DBSCAN(eps=0.3, min_samples=10, metric='haversine') > # replace eps and min_samples as appropriate > db.fit(coords) > > Cheers, > Shane > > > On 03/30, Sebastian Raschka wrote: > Hi, Shuchi, > > 1. How can I add data to the data set of the package? > > You don’t need to add your dataset to the dataset module to run your > analysis. A convenient way to load it into a numpy array would be via pandas. > E.g., > > import pandas as pd > df = pd.read_csv(‘your_data.txt', delimiter=r"\s+”) > X = df.values > > 2. How I can calculate Rand index for my data? > > After you ran the clustering, you can use the “adjusted_rand_score” function, > e.g., see > http://scikit-learn.org/stable/modules/clustering.html#adjusted-rand-score > > 3. How to use make_blobs command for my data? > > The make_blobs command is just a utility function to create toydatasets, you > wouldn’t need it in your case since you already have “real” data. > > Best, > Sebastian > > > On Mar 30, 2017, at 4:51 AM, Shuchi Mala <shuchi...@gmail.com> wrote: > > Hi everyone, > > I have the data with following attributes: (Latitude, Longitude). Now I am > performing clustering using DBSCAN for my data. I have following doubts: > > 1. How can I add data to the data set of the package? > 2. How I can calculate Rand index for my data? > 3. How to use make_blobs command for my data? > > Sample of my data is : > Latitude Longitude > 37.76901 -122.429299 > 37.76904 -122.42913 > 37.76878 -122.429092 > 37.7763 -122.424249 > 37.77627 -122.424657 > > > With Best Regards, > Shuchi Mala > Research Scholar > Department of Civil Engineering > MNIT Jaipur > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > -- > *PhD candidate & Research Assistant* > *Cooperative Institute for Research in Environmental Sciences (CIRES)* > *University of Colorado at Boulder* > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn _______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn