Don’t get me wrong, but you’d have to either manually label them yourself, 
asking domain experts, or use platforms like Amazon Turk (or collect them in 
some other way). 

> On Apr 3, 2017, at 7:38 AM, Shuchi Mala <shuchi...@gmail.com> wrote:
> 
> How can I get  ground truth labels of the training examples in my dataset?
> 
> With Best Regards,
> Shuchi  Mala
> Research Scholar
> Department of Civil Engineering
> MNIT Jaipur
> 
> 
> On Fri, Mar 31, 2017 at 8:17 PM, Sebastian Raschka <se.rasc...@gmail.com> 
> wrote:
> Hi, Shuchi,
> 
> regarding labels_true: you’d only be able to compute the rand index adjusted 
> for chance if you have the ground truth labels iof the training examples in 
> your dataset.
> 
> The second parameter, labels_pred, takes in the predicted cluster labels 
> (indices) that you got from the clustering. E.g,
> 
> dbscn = DBSCAN()
> labels_pred = dbscn.fit(X).predict(X)
> 
> Best,
> Sebastian
> 
> 
> > On Mar 31, 2017, at 12:02 AM, Shuchi Mala <shuchi...@gmail.com> wrote:
> >
> > Thank you so much for your quick reply. I have one more doubt. The below 
> > statement is used to calculate rand score.
> >
> > metrics.adjusted_rand_score(labels_true, labels_pred)
> >  In my case what will be labels_true and labels_pred and how I will 
> > calculate labels_pred?
> >
> > With Best Regards,
> > Shuchi  Mala
> > Research Scholar
> > Department of Civil Engineering
> > MNIT Jaipur
> >
> >
> > On Thu, Mar 30, 2017 at 8:38 PM, Shane Grigsby <shane.grig...@colorado.edu> 
> > wrote:
> > Since you're using lat / long coords, you'll also want to convert them to 
> > radians and specify 'haversine' as your distance metric; i.e. :
> >
> >    coords = np.vstack([lats.ravel(),longs.ravel()]).T
> >    coords *= np.pi / 180. # to radians
> >
> > ...and:
> >
> >    db = DBSCAN(eps=0.3, min_samples=10, metric='haversine')
> >    # replace eps and min_samples as appropriate
> >    db.fit(coords)
> >
> > Cheers,
> > Shane
> >
> >
> > On 03/30, Sebastian Raschka wrote:
> > Hi, Shuchi,
> >
> > 1. How can I add data to the data set of the package?
> >
> > You don’t need to add your dataset to the dataset module to run your 
> > analysis. A convenient way to load it into a numpy array would be via 
> > pandas. E.g.,
> >
> > import pandas as pd
> > df = pd.read_csv(‘your_data.txt', delimiter=r"\s+”)
> > X = df.values
> >
> > 2. How I can calculate Rand index for my data?
> >
> > After you ran the clustering, you can use the “adjusted_rand_score” 
> > function, e.g., see
> > http://scikit-learn.org/stable/modules/clustering.html#adjusted-rand-score
> >
> > 3. How to use make_blobs command for my data?
> >
> > The make_blobs command is just a utility function to create toydatasets, 
> > you wouldn’t need it in your case since you already have “real” data.
> >
> > Best,
> > Sebastian
> >
> >
> > On Mar 30, 2017, at 4:51 AM, Shuchi Mala <shuchi...@gmail.com> wrote:
> >
> > Hi everyone,
> >
> > I have the data with following attributes: (Latitude, Longitude). Now I am 
> > performing clustering using DBSCAN for my data. I have following doubts:
> >
> > 1. How can I add data to the data set of the package?
> > 2. How I can calculate Rand index for my data?
> > 3. How to use make_blobs command for my data?
> >
> > Sample of my data is :
> > Latitude        Longitude
> > 37.76901        -122.429299
> > 37.76904        -122.42913
> > 37.76878        -122.429092
> > 37.7763 -122.424249
> > 37.77627        -122.424657
> >
> >
> > With Best Regards,
> > Shuchi  Mala
> > Research Scholar
> > Department of Civil Engineering
> > MNIT Jaipur
> >
> > _______________________________________________
> > scikit-learn mailing list
> > scikit-learn@python.org
> > https://mail.python.org/mailman/listinfo/scikit-learn
> >
> > _______________________________________________
> > scikit-learn mailing list
> > scikit-learn@python.org
> > https://mail.python.org/mailman/listinfo/scikit-learn
> >
> > --
> > *PhD candidate & Research Assistant*
> > *Cooperative Institute for Research in Environmental Sciences (CIRES)*
> > *University of Colorado at Boulder*
> >
> > _______________________________________________
> > scikit-learn mailing list
> > scikit-learn@python.org
> > https://mail.python.org/mailman/listinfo/scikit-learn
> >
> > _______________________________________________
> > scikit-learn mailing list
> > scikit-learn@python.org
> > https://mail.python.org/mailman/listinfo/scikit-learn
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
> 
> _______________________________________________
> scikit-learn mailing list
> scikit-learn@python.org
> https://mail.python.org/mailman/listinfo/scikit-learn

_______________________________________________
scikit-learn mailing list
scikit-learn@python.org
https://mail.python.org/mailman/listinfo/scikit-learn

Reply via email to