I am catching up to all the replies, apologies for the delay. (replied in reverse order)
@ Gaël, Thanks for your comments. I actually started with 1) Data Camp courses and 2) Python for Data Science book. Here's my review: 1) The course: it is fantastic! But they only give you a flavor of A FEW things. 2) The book: it is quick crash course, but not enough for you to take off. See code below. # Toy Python Code import numpy as np import pandas as pd N = 100 df = pd.DataFrame({ 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), 'x': np.linspace(0,stop=N-1,num=N), 'y': np.random.rand(N), 'C': np.random.choice(['Low','Medium','High'],N).tolist(), 'D': np.random.normal(100, 10, size=(N)).tolist() }) df.x len(dir(df)) # end of Python code My confusion: a) df.x gives you column x, but why, I thought things after dot are actions, or more like verbs performed on the object, namely df, in this case. b) len(dir(df)) gives 431. I only crated a dataframe, where did all these 431 things come from? Is there a documentation about this? It scares me because I only asked for a dataframe. @ Gael This is a pretty solid reference. It explains methods among other things, which is awesome! I think method is the barrier to entry for R users. @ Mail Thanks for the details, I will try to pick these computer science terminologies up. It has been a brutal week. @Massimo Yes, I have used that. It is indeed great for one to one equivalence reference. Thanks! On Tue, Jun 20, 2017 at 12:32 AM, Gaël Pegliasco via scikit-learn < scikit-learn@python.org> wrote: > And, answering your last question, a good way to learn Data science using > Python is, for I, "Python data science handbook" that you can read as > Jupyter notebooks: > > https://github.com/jakevdp/PythonDataScienceHandbook > > > Le 20/06/2017 à 06:28, Gaël Pegliasco via scikit-learn a écrit : > > Hi, > > You may find these R/Python comparison-sheets useful in understanding both > languages syntaxes and concepts: > > > - https://www.datacamp.com/community/tutorials/r-or- > python-for-data-analysis > - http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html > > > Gaël, > > Le 18/06/2017 à 18:02, C W a écrit : > > Dear Scikit-learn, > > What are some good ways and resources to learn Python for data analysis? > > I am extremely frustrated using this thing. Everything comes after a dot! > Why would you type the sam thing at the beginning of every line. It's not > efficient. > > code 1: > y_sin = np.sin(x) > y_cos = np.cos(x) > > I know you can import the entire package without the "as np", but I see > np.something as the standard. Why? > > Code 2: > model = LogisticRegression() > model.fit(X_train, y_train) > model.score(X_test, y_test) > > In R, everything is saved to a variable. In the code above, what if I > accidentally ran model.fit(), I would not know. > > Code 3: > from sklearn import linear_model > reg = linear_model.Ridge (alpha = .5) > reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1]) > > In the code above, sklearn > linear_model > Ridge, one lives inside the > other, it feels that there are multiple layer, how deep do I have to dig in? > > Can someone explain the mentality behind this setup? > > Thank you very much! > > M > > > _______________________________________________ > scikit-learn mailing > listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn > > > -- > [image: Makina Corpus] <http://makina-corpus.com> > Newsletters <http://makina-corpus.com/formulaires/newsletters> | > Formations <http://makina-corpus.com/formation> | Twitter > <https://twitter.com/makina_corpus> > Gaël Pegliasco > Chef de projets > Tél : 02 51 79 80 84 > Portable : 06 41 69 16 09 > 11 rue du Marchix FR-44000 Nantes > -- > @GPegliasco <https://twitter.com/GPegliasco> > -- > Découvrez Talend Data Integration > <http://makina-corpus.com/formation/etl-talend-open-studio>, LA solution > d'intégration de données Open Source > > > _______________________________________________ > scikit-learn mailing > listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn > > > -- > [image: Makina Corpus] <http://makina-corpus.com> > Newsletters <http://makina-corpus.com/formulaires/newsletters> | > Formations <http://makina-corpus.com/formation> | Twitter > <https://twitter.com/makina_corpus> > Gaël Pegliasco > Chef de projets > Tél : 02 51 79 80 84 > Portable : 06 41 69 16 09 > 11 rue du Marchix FR-44000 Nantes > -- > @GPegliasco <https://twitter.com/GPegliasco> > -- > Découvrez Talend Data Integration > <http://makina-corpus.com/formation/etl-talend-open-studio>, LA solution > d'intégration de données Open Source > > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn