You can also have a look at "Effective Computation in Physics" by Anthony Scopatz and Kathryn D. Huff.
It gives a very good overview of Python/numpy/pandas... Albert Thomas On Tue, 20 Jun 2017 at 07:25, C W <tmrs...@gmail.com> wrote: > I am catching up to all the replies, apologies for the delay. (replied in > reverse order) > > @ Gaël, > Thanks for your comments. I actually started with 1) Data Camp courses and > 2) Python for Data Science book. > > Here's my review: > 1) The course: it is fantastic! But they only give you a flavor of A FEW > things. > 2) The book: it is quick crash course, but not enough for you to take off. > See code below. > > # Toy Python Code > import numpy as np > import pandas as pd > > N = 100 > df = pd.DataFrame({ > 'A': pd.date_range(start='2016-01-01',periods=N,freq='D'), > 'x': np.linspace(0,stop=N-1,num=N), > 'y': np.random.rand(N), > 'C': np.random.choice(['Low','Medium','High'],N).tolist(), > 'D': np.random.normal(100, 10, size=(N)).tolist() > }) > df.x > len(dir(df)) > # end of Python code > > My confusion: > a) df.x gives you column x, but why, I thought things after dot are > actions, or more like verbs performed on the object, namely df, in this > case. > b) len(dir(df)) gives 431. I only crated a dataframe, where did all these > 431 things come from? Is there a documentation about this? It scares me > because I only asked for a dataframe. > > @ Gael > This is a pretty solid reference. It explains methods among other things, > which is awesome! I think method is the barrier to entry for R users. > > @ Mail > Thanks for the details, I will try to pick these computer science > terminologies up. It has been a brutal week. > > @Massimo > Yes, I have used that. It is indeed great for one to one equivalence > reference. > > Thanks! > > > > > > On Tue, Jun 20, 2017 at 12:32 AM, Gaël Pegliasco via scikit-learn < > scikit-learn@python.org> wrote: > >> And, answering your last question, a good way to learn Data science using >> Python is, for I, "Python data science handbook" that you can read as >> Jupyter notebooks: >> >> https://github.com/jakevdp/PythonDataScienceHandbook >> >> >> Le 20/06/2017 à 06:28, Gaël Pegliasco via scikit-learn a écrit : >> >> Hi, >> >> You may find these R/Python comparison-sheets useful in understanding >> both languages syntaxes and concepts: >> >> >> - >> https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis >> - http://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html >> >> >> Gaël, >> >> Le 18/06/2017 à 18:02, C W a écrit : >> >> Dear Scikit-learn, >> >> What are some good ways and resources to learn Python for data analysis? >> >> I am extremely frustrated using this thing. Everything comes after a dot! >> Why would you type the sam thing at the beginning of every line. It's not >> efficient. >> >> code 1: >> y_sin = np.sin(x) >> y_cos = np.cos(x) >> >> I know you can import the entire package without the "as np", but I see >> np.something as the standard. Why? >> >> Code 2: >> model = LogisticRegression() >> model.fit(X_train, y_train) >> model.score(X_test, y_test) >> >> In R, everything is saved to a variable. In the code above, what if I >> accidentally ran model.fit(), I would not know. >> >> Code 3: >> from sklearn import linear_model >> reg = linear_model.Ridge (alpha = .5) >> reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1]) >> >> In the code above, sklearn > linear_model > Ridge, one lives inside the >> other, it feels that there are multiple layer, how deep do I have to dig in? >> >> Can someone explain the mentality behind this setup? >> >> Thank you very much! >> >> M >> >> >> _______________________________________________ >> scikit-learn mailing >> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn >> >> >> -- >> [image: bckoegajjgeobgik.png] <http://makina-corpus.com> >> Newsletters <http://makina-corpus.com/formulaires/newsletters> | >> Formations <http://makina-corpus.com/formation> | Twitter >> <https://twitter.com/makina_corpus> >> Gaël Pegliasco >> Chef de projets >> Tél : 02 51 79 80 84 >> Portable : 06 41 69 16 09 >> 11 rue du Marchix FR-44000 Nantes >> -- >> @GPegliasco <https://twitter.com/GPegliasco> >> -- >> Découvrez Talend Data Integration >> <http://makina-corpus.com/formation/etl-talend-open-studio>, LA solution >> d'intégration de données Open Source >> >> >> _______________________________________________ >> scikit-learn mailing >> listscikit-learn@python.orghttps://mail.python.org/mailman/listinfo/scikit-learn >> >> >> -- >> [image: demfflofhelojfjn.png] <http://makina-corpus.com> >> Newsletters <http://makina-corpus.com/formulaires/newsletters> | >> Formations <http://makina-corpus.com/formation> | Twitter >> <https://twitter.com/makina_corpus> >> Gaël Pegliasco >> Chef de projets >> Tél : 02 51 79 80 84 >> Portable : 06 41 69 16 09 >> 11 rue du Marchix FR-44000 Nantes >> -- >> @GPegliasco <https://twitter.com/GPegliasco> >> -- >> Découvrez Talend Data Integration >> <http://makina-corpus.com/formation/etl-talend-open-studio>, LA solution >> d'intégration de données Open Source >> >> _______________________________________________ >> scikit-learn mailing list >> scikit-learn@python.org >> https://mail.python.org/mailman/listinfo/scikit-learn >> >> > _______________________________________________ > scikit-learn mailing list > scikit-learn@python.org > https://mail.python.org/mailman/listinfo/scikit-learn >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn