[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2019-08-29 Por tôpico Anderson Torres
Em qui, 29 de ago de 2019 às 12:42, Carlos Monteiro
 escreveu:
>
> Valeu!
> Tem alguma motivação para a congruência mod 6?
>

Seis é um número muito bom para testar congruências de primos, pois no
conjunto 1,2,3,4,5,6 apenas 1 e 5 são primos com 6. Em outras
palavras, primos são números da forma 6K+-1.

>
> Em qui, 29 de ago de 2019 12:12, Ralph Teixeira  escreveu:
>>
>> Resposta curta: 3, 7 e 13 servem.
>>
>> Resposta longa:
>> Sejam p1> porque então a soma seria par.
>> Afirmo que p1=3. De fato, caso contrário, todos eles deixariam resto 1 ou -1 
>> (hm, eu devia dizer 5, mas vou escrever -1 mesmo) na divisão por 6. Mas 
>> então seus quadrados deixariam resto 1 na divisão por 6, e a soma dos 
>> quadrados deixaria resto 3, absurdo.
>> Note que p2 e p3 têm que deixar o mesmo resto (1 ou -1) na divisão por 6 
>> (caso contrário, p2+p3=6a+1+6b-1 seria divisível por 6, então 3+p2+p3 seria 
>> divisível por 3).
>> Então a gente quer coisas do tipo {3,6a+1,6b+1} ou {3,6a-1,6b-1}. Isto me 
>> leva a tentar
>> {3,5,11} -- soma 19, soma dos quadrados 155; Quebrei a cara.
>> {3,7,13} -- soma 23, soma dos quadrados 227. Ambos primos! Funcionou!
>>
>> Abraço, Ralph.
>>
>> On Thu, Aug 29, 2019 at 11:35 AM Carlos Monteiro 
>>  wrote:
>>>
>>> Encontre três números primos distintos dois a dois tais que sua soma e a 
>>> soma dos seus quadrados são números primos também.
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.


=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2019-08-29 Por tôpico Ralph Teixeira
Exato, 6 é um número pequeno com "muitos" divisores, então é um bom ponto
de partida...

Claro, a gente podia continuar analisando o problema e achando mais e mais
restrições (módulo 12... módulo 15... módulo 120...)... Mas, em algum
momento, você tem que partir para tentar uns números e ver o que acontece,
senão não fecha nunca. :D

On Thu, Aug 29, 2019 at 1:02 PM Claudio Buffara 
wrote:

> Acho que apenas o fato de que, apesar de existirem 6 restos possíveis ao
> se dividir um inteiro por 6, os primos maiores que 3 deixam apenas resto 1
> ou resto 5 (== -1).
>
>
> On Thu, Aug 29, 2019 at 12:42 PM Carlos Monteiro <
> cacacarlosalberto1...@gmail.com> wrote:
>
>> Valeu!
>> Tem alguma motivação para a congruência mod 6?
>>
>>
>> Em qui, 29 de ago de 2019 12:12, Ralph Teixeira 
>> escreveu:
>>
>>> Resposta curta: 3, 7 e 13 servem.
>>>
>>> Resposta longa:
>>> Sejam p1>> p1=2, porque então a soma seria par.
>>> Afirmo que p1=3. De fato, caso contrário, todos eles deixariam resto 1
>>> ou -1 (hm, eu devia dizer 5, mas vou escrever -1 mesmo) na divisão por 6.
>>> Mas então seus quadrados deixariam resto 1 na divisão por 6, e a soma dos
>>> quadrados deixaria resto 3, absurdo.
>>> Note que p2 e p3 têm que deixar o mesmo resto (1 ou -1) na divisão por 6
>>> (caso contrário, p2+p3=6a+1+6b-1 seria divisível por 6, então 3+p2+p3 seria
>>> divisível por 3).
>>> Então a gente quer coisas do tipo {3,6a+1,6b+1} ou {3,6a-1,6b-1}. Isto
>>> me leva a tentar
>>> {3,5,11} -- soma 19, soma dos quadrados 155; Quebrei a cara.
>>> {3,7,13} -- soma 23, soma dos quadrados 227. Ambos primos! Funcionou!
>>>
>>> Abraço, Ralph.
>>>
>>> On Thu, Aug 29, 2019 at 11:35 AM Carlos Monteiro <
>>> cacacarlosalberto1...@gmail.com> wrote:
>>>
 Encontre três números primos distintos dois a dois tais que sua soma e
 a soma dos seus quadrados são números primos também.

 --
 Esta mensagem foi verificada pelo sistema de antivírus e
 acredita-se estar livre de perigo.
>>>
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2019-08-29 Por tôpico Claudio Buffara
Acho que apenas o fato de que, apesar de existirem 6 restos possíveis ao se
dividir um inteiro por 6, os primos maiores que 3 deixam apenas resto 1 ou
resto 5 (== -1).


On Thu, Aug 29, 2019 at 12:42 PM Carlos Monteiro <
cacacarlosalberto1...@gmail.com> wrote:

> Valeu!
> Tem alguma motivação para a congruência mod 6?
>
>
> Em qui, 29 de ago de 2019 12:12, Ralph Teixeira 
> escreveu:
>
>> Resposta curta: 3, 7 e 13 servem.
>>
>> Resposta longa:
>> Sejam p1> porque então a soma seria par.
>> Afirmo que p1=3. De fato, caso contrário, todos eles deixariam resto 1 ou
>> -1 (hm, eu devia dizer 5, mas vou escrever -1 mesmo) na divisão por 6. Mas
>> então seus quadrados deixariam resto 1 na divisão por 6, e a soma dos
>> quadrados deixaria resto 3, absurdo.
>> Note que p2 e p3 têm que deixar o mesmo resto (1 ou -1) na divisão por 6
>> (caso contrário, p2+p3=6a+1+6b-1 seria divisível por 6, então 3+p2+p3 seria
>> divisível por 3).
>> Então a gente quer coisas do tipo {3,6a+1,6b+1} ou {3,6a-1,6b-1}. Isto me
>> leva a tentar
>> {3,5,11} -- soma 19, soma dos quadrados 155; Quebrei a cara.
>> {3,7,13} -- soma 23, soma dos quadrados 227. Ambos primos! Funcionou!
>>
>> Abraço, Ralph.
>>
>> On Thu, Aug 29, 2019 at 11:35 AM Carlos Monteiro <
>> cacacarlosalberto1...@gmail.com> wrote:
>>
>>> Encontre três números primos distintos dois a dois tais que sua soma e a
>>> soma dos seus quadrados são números primos também.
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Números primos

2019-08-29 Por tôpico Carlos Monteiro
Valeu!
Tem alguma motivação para a congruência mod 6?


Em qui, 29 de ago de 2019 12:12, Ralph Teixeira 
escreveu:

> Resposta curta: 3, 7 e 13 servem.
>
> Resposta longa:
> Sejam p1 porque então a soma seria par.
> Afirmo que p1=3. De fato, caso contrário, todos eles deixariam resto 1 ou
> -1 (hm, eu devia dizer 5, mas vou escrever -1 mesmo) na divisão por 6. Mas
> então seus quadrados deixariam resto 1 na divisão por 6, e a soma dos
> quadrados deixaria resto 3, absurdo.
> Note que p2 e p3 têm que deixar o mesmo resto (1 ou -1) na divisão por 6
> (caso contrário, p2+p3=6a+1+6b-1 seria divisível por 6, então 3+p2+p3 seria
> divisível por 3).
> Então a gente quer coisas do tipo {3,6a+1,6b+1} ou {3,6a-1,6b-1}. Isto me
> leva a tentar
> {3,5,11} -- soma 19, soma dos quadrados 155; Quebrei a cara.
> {3,7,13} -- soma 23, soma dos quadrados 227. Ambos primos! Funcionou!
>
> Abraço, Ralph.
>
> On Thu, Aug 29, 2019 at 11:35 AM Carlos Monteiro <
> cacacarlosalberto1...@gmail.com> wrote:
>
>> Encontre três números primos distintos dois a dois tais que sua soma e a
>> soma dos seus quadrados são números primos também.
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-09 Por tôpico Pedro José
Boa noite!
Bruno,
Grato pela a ajuda.
Foi o que pensei.
Portanto, o enunciado não está legal.
Deveria ser dos quatro menores primos. Para excluir o 113. Nem sei se tem
outros fatores. Mas agora, confirmei 2, 3, 5, 29 e 113 e ainda podem
existir mais.
Saudações,
PJMS

Em Sáb, 9 de jun de 2018 16:34, Bruno Visnadi 
escreveu:

> 15^(4k + 3) = 98 (mod 113), para todo k inteiro. E 15^15 = 3 (mod 4)
> Então, 15^(15^15) + 15 = 98 + 15 = 0 mod (113), isto é, 113 divide
> 15^(15^15) + 15.
>
> Em 9 de junho de 2018 15:55, Pedro José  escreveu:
>
>> Boa tarde!
>> Alguém poderia dizer se 113 divide ou não 15^(15^15) +15?
>>
>> Saudações,
>> PJMS
>>
>>
>> Em Sex, 8 de jun de 2018 15:41, Pedro José 
>> escreveu:
>>
>>> Boa tarde!
>>>
>>> Ajudem-me.
>>> p=113 ==> Fi(113) = 112
>>>
>>> 15^(15^15) = 15^b onde b = 15^15 mod 112.
>>> 15^15= 15 mod 112.
>>> 15^(15^15)= 15^(k.112+15)= (15^112)^k*15^15=15^15 mod 113
>>> 15^(15^15-1)= 15^14= -1 mod 13
>>> logo 113 também divide 15^(15^15) + 15.
>>> 113 é primo.
>>> O enunciado deveria ser dos 4 menores fatores primos de...
>>>
>>> Ou está errado que 113 | 15^(15^15)+15
>>>
>>> Saudações,
>>> PJMS
>>>
>>>
>>> Em 8 de junho de 2018 15:27, Pedro José  escreveu:
>>>
 Boa tarde!
 Já tinha corrigido.
 Mas não consigo vislumbrar, por que só existem esses 4 primos: 2, 3, 5
 e 29.

 Em 8 de junho de 2018 14:24, Otávio Araújo 
 escreveu:

> O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k
>
> Em sex, 8 de jun de 2018 2:21 PM, Pedro José 
> escreveu:
>
>> Boa tarde!
>> Não tive tempo de corrigir.
>> Seja a= 15^15
>> p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita,
>> quando coloquei 15 em evidência.
>>
>> p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
>> p=7 ==> 15^(a-1) = 1; p=7 não atende.
>> b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
>> p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
>> 15^(a-1)=15^4= 3 mod11. p=11 não atende.
>> p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não
>> atende.
>> p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4
>> = -1 e 4 não divide 14; p=17 não atende.
>> p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não
>> atende
>> p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
>> p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.
>>
>> O outro primo é 29.
>>
>> Porém, se não há a dica que só tem mais um fator primo, boiaria.
>> Agora, o objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 
>> =
>> 29^k, com k natural.
>>
>> Saudações,
>> PJMS.
>>
>> Em 7 de junho de 2018 23:31, Pedro José 
>> escreveu:
>>
>>> Boa noite.
>>> Desconsiderar.
>>> Está errado.
>>>
>>> Em Qui, 7 de jun de 2018 23:10, Pedro José 
>>> escreveu:
>>>
 Boa noite!
 p| 15(15^(15^15)+1) então:
 15^(15^15) = -1 mod p.

 Como 15^(p-1) =1 mod p
 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
 Como o problema da a dica de que são apenas 4 primos.isso não
 pensei como mostrar, sem a dica do enunciado.
 Aí, você começa com p=7 e continua até achar o primo desejado.
 Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
 Para p=11, 15^15=5 mod10
 15^(15^15)=15^5=1 mod 11, não atende.
 Até chegar a p=31.
 15^15= 15 mod 30
 15^15 = ? mod 31
 15^2=8 mod 31
 15^4 =64=2 mod 31
 14^8=4 mod 31
 15^14=8*2*4=2 mod  31.
 15^15= -1 mod 31.
 Então o outro primo é 31.
 Saudações,
 PJMS.

 Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
 escreveu:

> A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
> R: 39
>
> Pergunta: dá pra saber rápido q se colocarmos 15 em evidência
> temos os fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 
> tbm é
> fator.
> Minha dificuldade é descobrir o terceiro
> --
> Fiscal: Daniel Quevedo
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.


>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>


>>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-09 Por tôpico Bruno Visnadi
15^(4k + 3) = 98 (mod 113), para todo k inteiro. E 15^15 = 3 (mod 4)
Então, 15^(15^15) + 15 = 98 + 15 = 0 mod (113), isto é, 113 divide
15^(15^15) + 15.

Em 9 de junho de 2018 15:55, Pedro José  escreveu:

> Boa tarde!
> Alguém poderia dizer se 113 divide ou não 15^(15^15) +15?
>
> Saudações,
> PJMS
>
>
> Em Sex, 8 de jun de 2018 15:41, Pedro José  escreveu:
>
>> Boa tarde!
>>
>> Ajudem-me.
>> p=113 ==> Fi(113) = 112
>>
>> 15^(15^15) = 15^b onde b = 15^15 mod 112.
>> 15^15= 15 mod 112.
>> 15^(15^15)= 15^(k.112+15)= (15^112)^k*15^15=15^15 mod 113
>> 15^(15^15-1)= 15^14= -1 mod 13
>> logo 113 também divide 15^(15^15) + 15.
>> 113 é primo.
>> O enunciado deveria ser dos 4 menores fatores primos de...
>>
>> Ou está errado que 113 | 15^(15^15)+15
>>
>> Saudações,
>> PJMS
>>
>>
>> Em 8 de junho de 2018 15:27, Pedro José  escreveu:
>>
>>> Boa tarde!
>>> Já tinha corrigido.
>>> Mas não consigo vislumbrar, por que só existem esses 4 primos: 2, 3, 5 e
>>> 29.
>>>
>>> Em 8 de junho de 2018 14:24, Otávio Araújo 
>>> escreveu:
>>>
 O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k

 Em sex, 8 de jun de 2018 2:21 PM, Pedro José 
 escreveu:

> Boa tarde!
> Não tive tempo de corrigir.
> Seja a= 15^15
> p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita, quando
> coloquei 15 em evidência.
>
> p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
> p=7 ==> 15^(a-1) = 1; p=7 não atende.
> b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
> p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
> 15^(a-1)=15^4= 3 mod11. p=11 não atende.
> p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não atende.
> p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4
> = -1 e 4 não divide 14; p=17 não atende.
> p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não
> atende
> p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
> p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.
>
> O outro primo é 29.
>
> Porém, se não há a dica que só tem mais um fator primo, boiaria.
> Agora, o objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 =
> 29^k, com k natural.
>
> Saudações,
> PJMS.
>
> Em 7 de junho de 2018 23:31, Pedro José 
> escreveu:
>
>> Boa noite.
>> Desconsiderar.
>> Está errado.
>>
>> Em Qui, 7 de jun de 2018 23:10, Pedro José 
>> escreveu:
>>
>>> Boa noite!
>>> p| 15(15^(15^15)+1) então:
>>> 15^(15^15) = -1 mod p.
>>>
>>> Como 15^(p-1) =1 mod p
>>> 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
>>> Como o problema da a dica de que são apenas 4 primos.isso não pensei
>>> como mostrar, sem a dica do enunciado.
>>> Aí, você começa com p=7 e continua até achar o primo desejado.
>>> Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
>>> Para p=11, 15^15=5 mod10
>>> 15^(15^15)=15^5=1 mod 11, não atende.
>>> Até chegar a p=31.
>>> 15^15= 15 mod 30
>>> 15^15 = ? mod 31
>>> 15^2=8 mod 31
>>> 15^4 =64=2 mod 31
>>> 14^8=4 mod 31
>>> 15^14=8*2*4=2 mod  31.
>>> 15^15= -1 mod 31.
>>> Então o outro primo é 31.
>>> Saudações,
>>> PJMS.
>>>
>>> Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
>>> escreveu:
>>>
 A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
 R: 39

 Pergunta: dá pra saber rápido q se colocarmos 15 em evidência temos
 os fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 tbm é 
 fator.
 Minha dificuldade é descobrir o terceiro
 --
 Fiscal: Daniel Quevedo

 --
 Esta mensagem foi verificada pelo sistema de antivírus e
 acredita-se estar livre de perigo.
>>>
>>>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.


 --
 Esta mensagem foi verificada pelo sistema de antivírus e
 acredita-se estar livre de perigo.

>>>
>>>
>>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-09 Por tôpico Pedro José
Boa tarde!
Alguém poderia dizer se 113 divide ou não 15^(15^15) +15?

Saudações,
PJMS


Em Sex, 8 de jun de 2018 15:41, Pedro José  escreveu:

> Boa tarde!
>
> Ajudem-me.
> p=113 ==> Fi(113) = 112
>
> 15^(15^15) = 15^b onde b = 15^15 mod 112.
> 15^15= 15 mod 112.
> 15^(15^15)= 15^(k.112+15)= (15^112)^k*15^15=15^15 mod 113
> 15^(15^15-1)= 15^14= -1 mod 13
> logo 113 também divide 15^(15^15) + 15.
> 113 é primo.
> O enunciado deveria ser dos 4 menores fatores primos de...
>
> Ou está errado que 113 | 15^(15^15)+15
>
> Saudações,
> PJMS
>
>
> Em 8 de junho de 2018 15:27, Pedro José  escreveu:
>
>> Boa tarde!
>> Já tinha corrigido.
>> Mas não consigo vislumbrar, por que só existem esses 4 primos: 2, 3, 5 e
>> 29.
>>
>> Em 8 de junho de 2018 14:24, Otávio Araújo 
>> escreveu:
>>
>>> O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k
>>>
>>> Em sex, 8 de jun de 2018 2:21 PM, Pedro José 
>>> escreveu:
>>>
 Boa tarde!
 Não tive tempo de corrigir.
 Seja a= 15^15
 p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita, quando
 coloquei 15 em evidência.

 p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
 p=7 ==> 15^(a-1) = 1; p=7 não atende.
 b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
 p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
 15^(a-1)=15^4= 3 mod11. p=11 não atende.
 p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não atende.
 p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4 =
 -1 e 4 não divide 14; p=17 não atende.
 p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não
 atende
 p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
 p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.

 O outro primo é 29.

 Porém, se não há a dica que só tem mais um fator primo, boiaria. Agora,
 o objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 = 29^k,
 com k natural.

 Saudações,
 PJMS.

 Em 7 de junho de 2018 23:31, Pedro José  escreveu:

> Boa noite.
> Desconsiderar.
> Está errado.
>
> Em Qui, 7 de jun de 2018 23:10, Pedro José 
> escreveu:
>
>> Boa noite!
>> p| 15(15^(15^15)+1) então:
>> 15^(15^15) = -1 mod p.
>>
>> Como 15^(p-1) =1 mod p
>> 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
>> Como o problema da a dica de que são apenas 4 primos.isso não pensei
>> como mostrar, sem a dica do enunciado.
>> Aí, você começa com p=7 e continua até achar o primo desejado.
>> Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
>> Para p=11, 15^15=5 mod10
>> 15^(15^15)=15^5=1 mod 11, não atende.
>> Até chegar a p=31.
>> 15^15= 15 mod 30
>> 15^15 = ? mod 31
>> 15^2=8 mod 31
>> 15^4 =64=2 mod 31
>> 14^8=4 mod 31
>> 15^14=8*2*4=2 mod  31.
>> 15^15= -1 mod 31.
>> Então o outro primo é 31.
>> Saudações,
>> PJMS.
>>
>> Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
>> escreveu:
>>
>>> A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
>>> R: 39
>>>
>>> Pergunta: dá pra saber rápido q se colocarmos 15 em evidência temos
>>> os fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 tbm é 
>>> fator.
>>> Minha dificuldade é descobrir o terceiro
>>> --
>>> Fiscal: Daniel Quevedo
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>

 --
 Esta mensagem foi verificada pelo sistema de antivírus e
 acredita-se estar livre de perigo.
>>>
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>>
>>
>>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-08 Por tôpico Pedro José
Boa tarde!

Ajudem-me.
p=113 ==> Fi(113) = 112

15^(15^15) = 15^b onde b = 15^15 mod 112.
15^15= 15 mod 112.
15^(15^15)= 15^(k.112+15)= (15^112)^k*15^15=15^15 mod 113
15^(15^15-1)= 15^14= -1 mod 13
logo 113 também divide 15^(15^15) + 15.
113 é primo.
O enunciado deveria ser dos 4 menores fatores primos de...

Ou está errado que 113 | 15^(15^15)+15

Saudações,
PJMS


Em 8 de junho de 2018 15:27, Pedro José  escreveu:

> Boa tarde!
> Já tinha corrigido.
> Mas não consigo vislumbrar, por que só existem esses 4 primos: 2, 3, 5 e
> 29.
>
> Em 8 de junho de 2018 14:24, Otávio Araújo 
> escreveu:
>
>> O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k
>>
>> Em sex, 8 de jun de 2018 2:21 PM, Pedro José 
>> escreveu:
>>
>>> Boa tarde!
>>> Não tive tempo de corrigir.
>>> Seja a= 15^15
>>> p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita, quando
>>> coloquei 15 em evidência.
>>>
>>> p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
>>> p=7 ==> 15^(a-1) = 1; p=7 não atende.
>>> b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
>>> p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
>>> 15^(a-1)=15^4= 3 mod11. p=11 não atende.
>>> p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não atende.
>>> p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4 =
>>> -1 e 4 não divide 14; p=17 não atende.
>>> p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não atende
>>> p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
>>> p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.
>>>
>>> O outro primo é 29.
>>>
>>> Porém, se não há a dica que só tem mais um fator primo, boiaria. Agora,
>>> o objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 = 29^k,
>>> com k natural.
>>>
>>> Saudações,
>>> PJMS.
>>>
>>> Em 7 de junho de 2018 23:31, Pedro José  escreveu:
>>>
 Boa noite.
 Desconsiderar.
 Está errado.

 Em Qui, 7 de jun de 2018 23:10, Pedro José 
 escreveu:

> Boa noite!
> p| 15(15^(15^15)+1) então:
> 15^(15^15) = -1 mod p.
>
> Como 15^(p-1) =1 mod p
> 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
> Como o problema da a dica de que são apenas 4 primos.isso não pensei
> como mostrar, sem a dica do enunciado.
> Aí, você começa com p=7 e continua até achar o primo desejado.
> Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
> Para p=11, 15^15=5 mod10
> 15^(15^15)=15^5=1 mod 11, não atende.
> Até chegar a p=31.
> 15^15= 15 mod 30
> 15^15 = ? mod 31
> 15^2=8 mod 31
> 15^4 =64=2 mod 31
> 14^8=4 mod 31
> 15^14=8*2*4=2 mod  31.
> 15^15= -1 mod 31.
> Então o outro primo é 31.
> Saudações,
> PJMS.
>
> Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
> escreveu:
>
>> A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
>> R: 39
>>
>> Pergunta: dá pra saber rápido q se colocarmos 15 em evidência temos
>> os fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 tbm é 
>> fator.
>> Minha dificuldade é descobrir o terceiro
>> --
>> Fiscal: Daniel Quevedo
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>>
>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-08 Por tôpico Pedro José
Boa tarde!
Já tinha corrigido.
Mas não consigo vislumbrar, por que só existem esses 4 primos: 2, 3, 5 e 29.

Em 8 de junho de 2018 14:24, Otávio Araújo 
escreveu:

> O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k
>
> Em sex, 8 de jun de 2018 2:21 PM, Pedro José 
> escreveu:
>
>> Boa tarde!
>> Não tive tempo de corrigir.
>> Seja a= 15^15
>> p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita, quando
>> coloquei 15 em evidência.
>>
>> p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
>> p=7 ==> 15^(a-1) = 1; p=7 não atende.
>> b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
>> p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
>> 15^(a-1)=15^4= 3 mod11. p=11 não atende.
>> p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não atende.
>> p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4 =
>> -1 e 4 não divide 14; p=17 não atende.
>> p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não atende
>> p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
>> p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.
>>
>> O outro primo é 29.
>>
>> Porém, se não há a dica que só tem mais um fator primo, boiaria. Agora, o
>> objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 = 29^k, com
>> k natural.
>>
>> Saudações,
>> PJMS.
>>
>> Em 7 de junho de 2018 23:31, Pedro José  escreveu:
>>
>>> Boa noite.
>>> Desconsiderar.
>>> Está errado.
>>>
>>> Em Qui, 7 de jun de 2018 23:10, Pedro José 
>>> escreveu:
>>>
 Boa noite!
 p| 15(15^(15^15)+1) então:
 15^(15^15) = -1 mod p.

 Como 15^(p-1) =1 mod p
 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
 Como o problema da a dica de que são apenas 4 primos.isso não pensei
 como mostrar, sem a dica do enunciado.
 Aí, você começa com p=7 e continua até achar o primo desejado.
 Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
 Para p=11, 15^15=5 mod10
 15^(15^15)=15^5=1 mod 11, não atende.
 Até chegar a p=31.
 15^15= 15 mod 30
 15^15 = ? mod 31
 15^2=8 mod 31
 15^4 =64=2 mod 31
 14^8=4 mod 31
 15^14=8*2*4=2 mod  31.
 15^15= -1 mod 31.
 Então o outro primo é 31.
 Saudações,
 PJMS.

 Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
 escreveu:

> A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
> R: 39
>
> Pergunta: dá pra saber rápido q se colocarmos 15 em evidência temos os
> fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 tbm é fator.
> Minha dificuldade é descobrir o terceiro
> --
> Fiscal: Daniel Quevedo
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.


>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Números primos

2018-06-08 Por tôpico Otávio Araújo
O número 15^(15^15 - 1) + 1 é par, logo não pode ser da forma 29^k

Em sex, 8 de jun de 2018 2:21 PM, Pedro José  escreveu:

> Boa tarde!
> Não tive tempo de corrigir.
> Seja a= 15^15
> p | 15(15^(a-1) +1); Não subtrai 1 de 15^15, na primeira feita, quando
> coloquei 15 em evidência.
>
> p<>3 e p<>5 ==> 15^(a-1) = -1 mod p
> p=7 ==> 15^(a-1) = 1; p=7 não atende.
> b=a mod(p-1) ==> 15^(a-1)=15^(b-1) mod p
> p=11 ==> b= a = 5 mod 10 15^a= 15^5 mod11
> 15^(a-1)=15^4= 3 mod11. p=11 não atende.
> p=13 ==> b= 15^15=3 mod 12 ==> 15^(a-1)=15^2= 4 mod13; p=13 não atende.
> p=17 ==> b= 15^15 = 15 mod 16 ==> 15(a-1)=15^14<>-1 mod17, pois, 15^4 = -1
> e 4 não divide 14; p=17 não atende.
> p=19 ==> b= 15^15=9 mod18 ==> 15^(a-1) = 15^8 = 5 mod 19; p=19 não atende
> p=23 ==> b= 15^15=1 mod22 ==> 15(a-1) = 1 mod 23; p=23 não atende
> p=29 ==> b= 15^15 = 15 mod 28 ==>15^(a-1) = 15^14= -1 mod29.
>
> O outro primo é 29.
>
> Porém, se não há a dica que só tem mais um fator primo, boiaria. Agora, o
> objetivo é procurar uma forma de mostrar que 15^(15^15 - 1) + 1 = 29^k, com
> k natural.
>
> Saudações,
> PJMS.
>
> Em 7 de junho de 2018 23:31, Pedro José  escreveu:
>
>> Boa noite.
>> Desconsiderar.
>> Está errado.
>>
>> Em Qui, 7 de jun de 2018 23:10, Pedro José 
>> escreveu:
>>
>>> Boa noite!
>>> p| 15(15^(15^15)+1) então:
>>> 15^(15^15) = -1 mod p.
>>>
>>> Como 15^(p-1) =1 mod p
>>> 15^(15^15) = 15^a, onde a=15^15 mod(p-1).
>>> Como o problema da a dica de que são apenas 4 primos.isso não pensei
>>> como mostrar, sem a dica do enunciado.
>>> Aí, você começa com p=7 e continua até achar o primo desejado.
>>> Para p=7 da de cara:15^(15^15)=1 mod7, não atende.
>>> Para p=11, 15^15=5 mod10
>>> 15^(15^15)=15^5=1 mod 11, não atende.
>>> Até chegar a p=31.
>>> 15^15= 15 mod 30
>>> 15^15 = ? mod 31
>>> 15^2=8 mod 31
>>> 15^4 =64=2 mod 31
>>> 14^8=4 mod 31
>>> 15^14=8*2*4=2 mod  31.
>>> 15^15= -1 mod 31.
>>> Então o outro primo é 31.
>>> Saudações,
>>> PJMS.
>>>
>>> Em Qui, 7 de jun de 2018 18:27, Daniel Quevedo 
>>> escreveu:
>>>
 A soma dos 4 fatores primos distintos do número 15^(15^15) + 15 é:
 R: 39

 Pergunta: dá pra saber rápido q se colocarmos 15 em evidência temos os
 fatores 3 e 5. Como a soma de dois ímpares é sempre par, o 2 tbm é fator.
 Minha dificuldade é descobrir o terceiro
 --
 Fiscal: Daniel Quevedo

 --
 Esta mensagem foi verificada pelo sistema de antivírus e
 acredita-se estar livre de perigo.
>>>
>>>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Números Primos

2011-08-04 Por tôpico Johann Dirichlet
Bem, eu conheço um assim:

Como estudo de caso, seja 7 o primo que estamos pesquisando.

1 - Encontre um divisor da forma M*10+1. No caso, 7*3=21, M=2.

2 - A cada passo, faça isto aqui:
2a - Arranque o último dígito, e duplique-o (M=2, e 7*3=2*10+1);
2b - Subtraia do restante do número.

Por exemplo, 1001 é múltiplo de 7?

1001 = 100-2=98 = 9-2*8=-7, OK, pois 7 é múltiplo!

Encontrar divisores da forma 10K+1 é fácil, basta olhar a tabuada.

Em 03/08/11, regis barrosregisgbar...@yahoo.com.br escreveu:
 Boa Tarde Pessoal
 Gostaria algum material sobre criterio de divisibilidade que nesta lista
 mandou algum tempo atrás sobre o assunto e do qual não estou encontrando o
 email com o link sobre o assunto.

 Regis Godoy BarrosGraduado em Licenciatura em Fisica - IFSPGraduando em
 Licenciatura em Matemática - UNICAMP




-- 
/**/
神が祝福

Torres

=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números Primos

2011-08-04 Por tôpico Marcus Aurelio Gonçalves Rodrigues
Determine os números inteiros positivos cujos únicos divisores primos são 7
e 11 e que possuem exatamente 15 divisores positivos diferentes de 1


[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Números Primos

2011-08-04 Por tôpico Johann Dirichlet
7^a*11^b têm 16 divisores no total.
(a+1)(b+1)=16

Liste as possibilidades e finalize!


Em 04/08/11, Marcus Aurelio Gonçalves
Rodriguesmarcusaureli...@globo.com escreveu:
 Determine os números inteiros positivos cujos únicos divisores primos são 7
 e 11 e que possuem exatamente 15 divisores positivos diferentes de 1



-- 
/**/
神が祝福

Torres

=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/obm-l.html
=


[obm-l] RE: [obm-l] Re: [obm -l] Números Primos

2010-04-09 Por tôpico vitor alves

obrigado!!!
 


From: le.silvas.l...@hotmail.com
To: obm-l@mat.puc-rio.br
Subject: [obm-l] Re: [obm-l] Números Primos
Date: Fri, 9 Apr 2010 08:57:55 -0300




Olá, Vitor!
 
A média aritmética de dois números primos pode ser um número primo!
 
Por exemplo: 
Dado a primo, (a + a)/2  = a; 
Ou, (7 + 3)/2 = 5;
Ou, (101 + 5)/2 = 53.
 
Mas, também pode a média aritmética entre dois primos não ser um primo.
Por exemplo: 
 
(5 + 7)/2 = 6;
Ou, (1001 + 3) = 52. 
 
 
  Abraço!
 Leandro. 
 
 
 




From: vitor alves 
Sent: Friday, April 09, 2010 8:00 AM
To: obm-l@mat.puc-rio.br 
Subject: [obm-l] Números Primos

Como provar que a média aritmética de dois números primos nunca é um número 
primo? 


Quer ver seus e-mails de todas as contas num lugar só? Junte todas elas no 
Hotmail.   
_
O Internet Explorer 8 te dá dicas de como navegar mais seguro. Clique para ler 
todas.
http://www.microsoft.com/brasil/windows/internet-explorer/?WT.mc_id=1500