[obm-l] Re: [obm-l] Re: [obm-l] Re: [obm-l] Combinatória (permutações)

2019-04-25 Por tôpico Ralph Teixeira
Sim, voce tem razao, os termos em portugues nao estao corretos... A ideia
(que eu nao escrevi) eh que cada sequencia que foi contada multiplas vezes
num termo vai ser descontada nos termos seguintes, por isso tudo funciona.
Vejamos se dah para expressar melhor o que foi de fato feito...

Considere os conjuntos A1={permutacoes que mantem o 2 fixo},
A2={permutacoes que mantem o 4 fixo}, A3={permutacoes que mantem o 6 fixo}
e A4={permutacoes que mantem o 8 fixo}.

Entao, agora sim, por inclusao-exclusao:

 #(A1UA2UA3UA4) = #(A1) + #(A2) + #(A3) + #(A4) - #(A1UA2) - #(A1UA3) -
#(A1UA4) - ... -#(A3UA4) + #(A1UA2UA3) + #(A1UA2UA4) + #(A1UA3UA4) +
#(A2UA3UA4) - #(A1UA2UA3UA4)

Mas, por simetria, cada termo desses soh depende de QUANTOS conjuntos
aparecem naquela uniao -- mais exatamente, os termos com 1 indice sao 8!
(pois fixamos um termo, os outros podem ser permutados de qualquer jeito),
os com 2 indices sao 7! (dois numeros fixos, os outros como quisermos), e
assim por diante. Portanto:

 #(A1UA2UA3UA4) =  C(4,1).8! - C(4,2) . 7! + C(4,3).6! - 5!

Bom, isso sao as permutacoes em que PELO MENOS um dos 4 numeros estah fixo.
Como queremos o contrario (NENHUM fica fixo), a reposta eh:

#(permutacoes) = 9! - (4. 8! - C(4,2) . 7! + 4 . 6! - 5!)

Acho que agora ficou *bem* melhor escrito! :D

Abraco, Ralph.



On Thu, Apr 25, 2019 at 4:44 PM Pedro Lazéra  wrote:

> Ralph, eu fiquei com uma dúvida.
>
> Apesar de a sua resposta bater com o gabarito, os termos que você
> expressou com números batem mesmo com os termos que você expressou com
> palavras? Por exemplo, "#(permutações que pelo menos 1 dos pares fica no
> lugar)" =  "4.8!" ? Eu tenho a impressão que "4.8!" é maior, porque contou,
> por exemplo, a sequência (1,2,3,4,5,6,7,8,9) mais de uma vez.
>
> Por exemplo, se o mesmo enunciado fosse aplicado a 1,2,3,4, você acharia
> como resposta, por analogia, 4! - 2*3! + C(2,2)*2! = 14, que é a resposta
> certa, mas "#(permutações que pelo menos 1 dos pares fica no lugar)" = 10,
> que é diferente de "2*3!". Não? Neste caso, 2*3! conta (1,2,3,4) e
> (3,2,1,4) duas vezes.
>
> Abraços,
> Pedro
>
> On Thu, Apr 25, 2019 at 2:32 PM Ralph Teixeira  wrote:
>
>> Por inclusão-exclusão, eu achei:
>>
>> #(permutações) = #(total) - #(permutações em que pelo menos um dos pares
>> fica no lugar) + #(permutações que pelo menos 2 dos pares ficam no lugar) -
>> #(permutações que pelo menos 3 dos pares ficam no lugar) + #(permutações em
>> que todos os pares ficam no lugar)
>>  = 9! - 4.8! + C(4,2).7! - C(4,3). 6! +5! = 229080
>>
>> On Thu, Apr 25, 2019 at 7:03 AM Vanderlei Nemitz 
>> wrote:
>>
>>> Bom dia!
>>>
>>> Resolvi a questão a seguir, encontrei como resposta 229080, mas
>>> encontrei essa resposta em uma lista e 133800 em outra. Gostaria de
>>> confirmar qual é a correta. Para mim, 133800 é o número de permutações em
>>> que pelo menos um algarismo par permanece em sua posição original.
>>>
>>> Muito obrigado!
>>>
>>>
>>> *De quantas maneiras podemos permutar os inteiros 1, 2, 3, 4, 5, 6, 7,
>>> 8, 9 de forma que nenhum inteiro par fique em sua posição natural?*
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Re: [obm-l] Re: [obm-l] Combinatória (permutações)

2019-04-25 Por tôpico Pedro Lazéra
Ralph, eu fiquei com uma dúvida.

Apesar de a sua resposta bater com o gabarito, os termos que você expressou
com números batem mesmo com os termos que você expressou com palavras? Por
exemplo, "#(permutações que pelo menos 1 dos pares fica no lugar)" =
"4.8!" ? Eu tenho a impressão que "4.8!" é maior, porque contou, por
exemplo, a sequência (1,2,3,4,5,6,7,8,9) mais de uma vez.

Por exemplo, se o mesmo enunciado fosse aplicado a 1,2,3,4, você acharia
como resposta, por analogia, 4! - 2*3! + C(2,2)*2! = 14, que é a resposta
certa, mas "#(permutações que pelo menos 1 dos pares fica no lugar)" = 10,
que é diferente de "2*3!". Não? Neste caso, 2*3! conta (1,2,3,4) e
(3,2,1,4) duas vezes.

Abraços,
Pedro

On Thu, Apr 25, 2019 at 2:32 PM Ralph Teixeira  wrote:

> Por inclusão-exclusão, eu achei:
>
> #(permutações) = #(total) - #(permutações em que pelo menos um dos pares
> fica no lugar) + #(permutações que pelo menos 2 dos pares ficam no lugar) -
> #(permutações que pelo menos 3 dos pares ficam no lugar) + #(permutações em
> que todos os pares ficam no lugar)
>  = 9! - 4.8! + C(4,2).7! - C(4,3). 6! +5! = 229080
>
> On Thu, Apr 25, 2019 at 7:03 AM Vanderlei Nemitz 
> wrote:
>
>> Bom dia!
>>
>> Resolvi a questão a seguir, encontrei como resposta 229080, mas encontrei
>> essa resposta em uma lista e 133800 em outra. Gostaria de confirmar qual é
>> a correta. Para mim, 133800 é o número de permutações em que pelo menos um
>> algarismo par permanece em sua posição original.
>>
>> Muito obrigado!
>>
>>
>> *De quantas maneiras podemos permutar os inteiros 1, 2, 3, 4, 5, 6, 7, 8,
>> 9 de forma que nenhum inteiro par fique em sua posição natural?*
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.