External Email - Use Caution        

Dear Colleagues,

We are pleased to announce the release of DPABISurf! DPABISurf is a
surface-based resting-state fMRI data analysis toolbox evolved from
DPABI/DPARSF, as easy-to-use as DPABI/DPARSF. DPABISurf is based on
fMRIPprep 1.3.0.post3 (Esteban et al., 2018)(RRID:SCR_016216), and based on
FreeSurfer 6.0.1 (Dale et al., 1999)(RRID:SCR_001847), ANTs 2.2.0 (Avants
et al., 2008)(RRID:SCR_004757), FSL 5.0.9 (Jenkinson et al.,
2002)(RRID:SCR_002823), AFNI 20160207 (Cox, 1996)(RRID:SCR_005927), SPM12
(Ashburner, 2012)(RRID:SCR_007037), PALM alpha112 (Winkler et al., 2016),
GNU Parallel (Tange, 2011), MATLAB (The MathWorks Inc., Natick, MA, US)
(RRID:SCR_001622), Docker (https://docker.com) (RRID:SCR_016445), and DPABI
V4.0 (Yan et al., 2016)(RRID:SCR_010501). DPABISurf provides user-friendly
graphical user interface (GUI) for pipeline surface-based preprocessing,
statistical analyses and results viewing, while requires no
programming/scripting skills from the users.

<http://www.rfmri.org/dpabi>

The DPABISurf pipeline first converts the user specified data into BIDS
format (Gorgolewski et al., 2016), and then calls fMRIPprep 1.3.0.post3
docker to preprocess the structural and functional MRI data, which
integrates FreeSurfer, ANTs, FSL and AFNI. With fMRIPprep, the data is
processed into FreeSurfer fsaverage5 surface space and MNI volume space.
DPABISurf further performs nuisance covariates regression (including
ICA-AROMA) on the surface-based data (volume-based data is processed as
well), and then calculate the commonly used R-fMRI metrics: amplitude of
low frequency fluctuation (ALFF) (Zang et al., 2007), fractional ALFF (Zou
et al., 2008), regional homogeneity (Zang et al., 2004), degree centrality
(Zuo and Xing, 2014), and seed-based functional connectivity. DPABISurf
also performs surface-based smoothing by calling FreeSurfer’s mri_surf2surf
command. These processed metrics then enters surfaced-based statistical
analyses within DPABISurf, which could perform surfaced-based permutation
test with TFCE by integrating PALM. Finally, the corrected results could be
viewed by the convenient surface viewer DPABISurf_VIEW, which is derived
from spm_mesh_render.m.

<http://www.rfmri.org/dpabi>

DPABISurf is designed to make surface-based data analysis require minimum
manual operations and almost no programming/scripting experience. We
anticipate this open-source toolbox will assist novices and expert users
alike and continue to support advancing R-fMRI methodology and its
application to clinical translational studies.

DPABISurf is open-source and distributed under GNU/GPL, available with
DPABI at http://www.rfmri.org/dpabi. It supports Windows 10 Pro, MacOS and
Linux operating systems. You can run it with or without MATLAB.

1. With MATLAB.

1.1. Please go to http://www.rfmri.org/dpabi to download DPABI.

1.2. Add with subfolders for DPABI in MATLAB's path setting.

1.3. Input 'dpabi' and then follow the instructions of the "Install" Button
on DPABISurf.


2. Without MATLAB.

2.1. Install Docker.

2.2. Terminal: docker pull cgyan/dpabi

2.3. Terminal: docker run -d --rm -v
/My/FreeSurferLicense/Path/license.txt:/opt/freesurfer/license.txt
-v /My/Data/Path:/data -p 5925:5925 cgyan/dpabi x11vnc -forever -shared
-usepw -create -rfbport 5925 &

/My/FreeSurferLicense/Path/license.txt: Where you stored the
FreeSurferLicense got from
https://surfer.nmr.mgh.harvard.edu/registration.html.

/My/Data/Path: This is where you stored your data. In Docker, the path is
/data.

2.4. Open VNC Viewer, connect to localhost:5925, the password is 'dpabi'.

2.5. In the terminal within the VNC Viewer, input "bash", and then input:

/opt/DPABI/DPABI_StandAlone/run_DPABI_StandAlone.sh ${MCRPath}

Now please enjoy the StandAlone version of DPABISurf with GUI!


References:

   - Ashburner, J. (2012). SPM: a history. *Neuroimage*, 62(2), 791-800,
   doi:10.1016/j.neuroimage.2011.10.025.
   - Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric
   diffeomorphic image registration with cross-correlation: evaluating
   automated labeling of elderly and neurodegenerative brain. *Med Image
   Anal*, 12(1), 26-41, doi:10.1016/j.media.2007.06.004.
   - Cox, R.W. (1996). AFNI: software for analysis and visualization of
   functional magnetic resonance neuroimages. *Comput Biomed Res*, 29(3),
   162-173.
   - Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based
   analysis. I. Segmentation and surface reconstruction. *Neuroimage*,
   9(2), 179-194, doi:10.1006/nimg.1998.0395.
   - Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I.,
   Erramuzpe, A., Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., Oya, H.,
   Ghosh, S.S., Wright, J., Durnez, J., Poldrack, R.A., Gorgolewski, K.J.
   (2018). fMRIPrep: a robust preprocessing pipeline for functional MRI. *Nat
   Methods*, doi:10.1038/s41592-018-0235-4.
   - Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S.,
   Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O.,
   Handwerker, D.A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C.,
   Nichols, B.N., Nichols, T.E., Pellman, J., Poline, J.B., Rokem, A.,
   Schaefer, G., Sochat, V., Triplett, W., Turner, J.A., Varoquaux, G.,
   Poldrack, R.A. (2016). The brain imaging data structure, a format for
   organizing and describing outputs of neuroimaging experiments. *Sci Data*,
   3, 160044, doi:10.1038/sdata.2016.44.
   - Jenkinson, M., Bannister, P., Brady, M., Smith, S. (2002). Improved
   optimization for the robust and accurate linear registration and motion
   correction of brain images. *Neuroimage*, 17(2), 825-841.
   - Tange, O. (2011). Gnu parallel-the command-line power tool. *The
   USENIX Magazine*, 36(1), 42-47.
   - Winkler, A.M., Ridgway, G.R., Douaud, G., Nichols, T.E., Smith, S.M.
   (2016). Faster permutation inference in brain imaging. *Neuroimage*,
   141, 502-516, doi:10.1016/j.neuroimage.2016.05.068.
   - Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F. (2016). DPABI: Data
   Processing & Analysis for (Resting-State) Brain Imaging.
   *Neuroinformatics*, 14(3), 339-351, doi:10.1007/s12021-016-9299-4.
   - Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L. (2004). Regional
   homogeneity approach to fMRI data analysis. *Neuroimage*, 22(1),
   394-400, doi:http://dx.doi.org/10.1016/j.neuroimage.2003.12.030.
   - Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian,
   L.X., Jiang, T.Z., Wang, Y.F. (2007). Altered baseline brain activity in
   children with ADHD revealed by resting-state functional MRI. *Brain Dev*,
   29(2), 83-91, doi:10.1016/j.braindev.2006.07.002.
   - Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J.,
   Wang, Y.-F., Zang, Y.-F. (2008). An improved approach to detection of
   amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI:
   Fractional ALFF. *Journal of Neuroscience Methods*, 172(1), 137-141, doi:
   http://dx.doi.org/10.1016/j.jneumeth.2008.04.012.
   - Zuo, X.-N., Xing, X.-X. (2014). Test-retest reliabilities of
   resting-state FMRI measurements in human brain functional connectomics: A
   systems neuroscience perspective. *Neuroscience & Biobehavioral Reviews*,
   45, 100-118, doi:http://dx.doi.org/10.1016/j.neubiorev.2014.05.009.


Best,

Chao-Gan
-- 
Chao-Gan YAN, Ph.D.
Professor, Principal Investigator
Deputy Director, Magnetic Resonance Imaging Research Center
Institute of Psychology, Chinese Academy of Sciences
16 Lincui Road, Chaoyang District, Beijing 100101, China
-
Initiator
<http://rfmri.org/DPARSF>DPABI <http://rfmri.org/DPABI>
<http://rfmri.org/DPARSF>, <http://dpabi.org>DPARSF
<http://rfmri.org/DPARSF>, PRN <http://rfmri.org/PRN> and The R-fMRI Network
<http://rfmri.org> (RFMRI.ORG <http://rfmri.org/>)
http://rfmri.org/yan
http://scholar.google.com/citations?user=lJQ9B58AAAAJ
_______________________________________________
Freesurfer mailing list
Freesurfer@nmr.mgh.harvard.edu
https://mail.nmr.mgh.harvard.edu/mailman/listinfo/freesurfer

Reply via email to