Re: [obm-l] Ajuda em Repunits

2022-07-10 Por tôpico Rubens Vilhena Fonseca
Muito interessante, não faço a mínima ideia de como fazer, mas como você
disse vou me divertir pesquisando. Não sei se tem alguma coisa a ver mas,
se dividir o período desses exemplos ao "meio"  e somar (1/11 deu essa
ideia) o resultado parecem ser 9's. Outra coisa que percebi é que a ordem
desses denominadores módulo 10 é igual ao tamanho do período ( de novo 1/11
deu essa ideia). E como alguns são raízes primitivas de 10 o período é o
maior possível...
Com certeza se for verdade, são fatos já provados, vou tentar encontrar as
fontes.
Obrigado pela atenção
[[ ]]'s


Em dom., 10 de jul. de 2022 às 16:38, Claudio Buffara <
claudio.buff...@gmail.com> escreveu:

> Se quiser se divertir mais com isso, veja o seguinte:
> 1/7 = 0,142857142857142...
> O período é 142 857 e 1+8 = 4+5 = 2+7 = 9.
>
> 1/11: o período é 09 e 0+9 = 9.
>
> 1/13: o período é 076 923 e 0+9 = 7+2 = 6+3 = 9.
>
> Determine, com demonstração, para quais números N, o período de 1/N tem
> esta propriedade.
>
>
>
>
> On Sun, Jul 10, 2022 at 8:41 AM Rubens Vilhena Fonseca <
> rubens.vilhen...@gmail.com> wrote:
>
>> Muito obrigado ao Ralph Costa Teixeira e ao Claudio Buffara por todos os
>> ótimos esclarecimentos.
>> [[ ]]'s
>>
>> Em dom., 10 de jul. de 2022 às 01:39, Ralph Costa Teixeira <
>> ralp...@gmail.com> escreveu:
>>
>>> Argh, corrigindo um detalhe ali perto do fim:
>>> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)**x**10^w = r*n.
>>> Novamente, como n é primo com 2, 3 e 5 *e x*, conclui-se que n divide
>>> 111 (com q 1's), e portanto q>=p=k.
>>>
>>> On Sun, Jul 10, 2022 at 1:24 AM Ralph Costa Teixeira 
>>> wrote:
>>>
 A chave: *os "restos parciais" que aparecem são exatamente os restos
 que x, 10x, 100x,  deixam na divisão por n.*
 ---///---

 MAIS SPOILERS ABAIXO


 ...


 


 ...


 

 Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
 ---///---
 LEMA:
 (i) Dado n não divisível por 2 ou 5, existe algum número da forma
 111...111 que é múltiplo de n.
 (ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
 111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
 do período (fundamental) da dízima em 1/n.
 PROVA:

 (i) Olhe os restos de 1, 11, 111, , ... na divisão por n. São n
 possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
 Isto significa que .. (com A dígitos) e 11...111 (com B dígitos,
 B>>> ...1110 (A 1's e B 0's) = 111 * (10^B) é múltiplo de n. Mas
 n não tem fator comum com aquele 10^B (pois não é divisível por 2 nem por
 5), portanto ...111 (com k=A-B dígitos) é divisível por n.

 (ii) Denote por P=111111 (com p dígitos) o menor daqueles caras com
 apenas "1s" que é múltiplo de n, e denote por k o "período fundamental" na
 dízima de 1/n.
 Por um lado, como 9P=999=10^p-1 é múltiplo de n, temos 10^p *
 (1/n) - 1/n inteiro. Mas isso significa que a parte decimal de 1/n "se
 repete" de p em p dígitos, ou seja, que a dízima de 1/n tem período p. Em
 particular, p>=k.
 Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) -
 (1/n) com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com
 m inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
 9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
 conclui-se que 111... (k 1's) tem que ser múltiplo de n, e portanto
 k>=p.

 Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
 10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
 decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
 primeiro dígito!

 ---///---
 Agora fica tudo bem simples:
 a) Na notação acima, provamos que k=p, e n divide 111 com p
 dígitos.
 b) Seja q o período (fundamental) da dízima de B=x/n irredutível.

 Em primeiro lugar, provemos que q=k. Basicamente repetimos o que
 fizemos no lema:
 -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)*10^w = r*n.
 Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111
 (com q 1's), e portanto q>=p=k.
 -- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B
 também é inteiro, ou seja, a dízima de B tem período k (e se inicia no
 primeiro dígito!). Portanto k>=q.

 *Enfim, note que os tais "restos parciais" que aparecem são exatamente
 os restos que x, 10x, 100x, , 10^q.x deixam na divisão por n. *A
 soma desses caras vale (...)*x, que é divisível por n pois temos
 ali q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a
 soma dos novos restos tem que ser múltiplo de n tambem.

 Foi?


 On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena 

Re: [obm-l] Ajuda em Repunits

2022-07-10 Por tôpico Claudio Buffara
Se quiser se divertir mais com isso, veja o seguinte:
1/7 = 0,142857142857142...
O período é 142 857 e 1+8 = 4+5 = 2+7 = 9.

1/11: o período é 09 e 0+9 = 9.

1/13: o período é 076 923 e 0+9 = 7+2 = 6+3 = 9.

Determine, com demonstração, para quais números N, o período de 1/N tem
esta propriedade.




On Sun, Jul 10, 2022 at 8:41 AM Rubens Vilhena Fonseca <
rubens.vilhen...@gmail.com> wrote:

> Muito obrigado ao Ralph Costa Teixeira e ao Claudio Buffara por todos os
> ótimos esclarecimentos.
> [[ ]]'s
>
> Em dom., 10 de jul. de 2022 às 01:39, Ralph Costa Teixeira <
> ralp...@gmail.com> escreveu:
>
>> Argh, corrigindo um detalhe ali perto do fim:
>> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)**x**10^w = r*n.
>> Novamente, como n é primo com 2, 3 e 5 *e x*, conclui-se que n divide
>> 111 (com q 1's), e portanto q>=p=k.
>>
>> On Sun, Jul 10, 2022 at 1:24 AM Ralph Costa Teixeira 
>> wrote:
>>
>>> A chave: *os "restos parciais" que aparecem são exatamente os restos
>>> que x, 10x, 100x,  deixam na divisão por n.*
>>> ---///---
>>>
>>> MAIS SPOILERS ABAIXO
>>>
>>>
>>> ...
>>>
>>>
>>> 
>>>
>>>
>>> ...
>>>
>>>
>>> 
>>>
>>> Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
>>> ---///---
>>> LEMA:
>>> (i) Dado n não divisível por 2 ou 5, existe algum número da forma
>>> 111...111 que é múltiplo de n.
>>> (ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
>>> 111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
>>> do período (fundamental) da dízima em 1/n.
>>> PROVA:
>>>
>>> (i) Olhe os restos de 1, 11, 111, , ... na divisão por n. São n
>>> possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
>>> Isto significa que .. (com A dígitos) e 11...111 (com B dígitos,
>>> B>> ...1110 (A 1's e B 0's) = 111 * (10^B) é múltiplo de n. Mas
>>> n não tem fator comum com aquele 10^B (pois não é divisível por 2 nem por
>>> 5), portanto ...111 (com k=A-B dígitos) é divisível por n.
>>>
>>> (ii) Denote por P=111111 (com p dígitos) o menor daqueles caras com
>>> apenas "1s" que é múltiplo de n, e denote por k o "período fundamental" na
>>> dízima de 1/n.
>>> Por um lado, como 9P=999=10^p-1 é múltiplo de n, temos 10^p *
>>> (1/n) - 1/n inteiro. Mas isso significa que a parte decimal de 1/n "se
>>> repete" de p em p dígitos, ou seja, que a dízima de 1/n tem período p. Em
>>> particular, p>=k.
>>> Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) -
>>> (1/n) com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com
>>> m inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
>>> 9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
>>> conclui-se que 111... (k 1's) tem que ser múltiplo de n, e portanto
>>> k>=p.
>>>
>>> Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
>>> 10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
>>> decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
>>> primeiro dígito!
>>>
>>> ---///---
>>> Agora fica tudo bem simples:
>>> a) Na notação acima, provamos que k=p, e n divide 111 com p
>>> dígitos.
>>> b) Seja q o período (fundamental) da dízima de B=x/n irredutível.
>>>
>>> Em primeiro lugar, provemos que q=k. Basicamente repetimos o que fizemos
>>> no lema:
>>> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)*10^w = r*n.
>>> Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111
>>> (com q 1's), e portanto q>=p=k.
>>> -- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B
>>> também é inteiro, ou seja, a dízima de B tem período k (e se inicia no
>>> primeiro dígito!). Portanto k>=q.
>>>
>>> *Enfim, note que os tais "restos parciais" que aparecem são exatamente
>>> os restos que x, 10x, 100x, , 10^q.x deixam na divisão por n. *A
>>> soma desses caras vale (...)*x, que é divisível por n pois temos
>>> ali q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a
>>> soma dos novos restos tem que ser múltiplo de n tambem.
>>>
>>> Foi?
>>>
>>>
>>> On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
>>> rubens.vilhen...@gmail.com> wrote:
>>>
 Gostaria de uma demonstração para o seguinte teorema.
 *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
 suponha que a expansão decimal de l/n tenha período k. Então n é um fator
 do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
 divisão obtida de cada fração irredutível x/n é um múltiplo de n.
 Comentário:
 Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 (
 k=6 1's).
 Essa parte consegui provar.
 Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
 {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
 Não consigo organizar uma sequência  de passos para a demonstração
 dos dois 

Re: [obm-l] Ajuda em Repunits

2022-07-10 Por tôpico Rubens Vilhena Fonseca
Muito obrigado ao Ralph Costa Teixeira e ao Claudio Buffara por todos os
ótimos esclarecimentos.
[[ ]]'s

Em dom., 10 de jul. de 2022 às 01:39, Ralph Costa Teixeira <
ralp...@gmail.com> escreveu:

> Argh, corrigindo um detalhe ali perto do fim:
> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)**x**10^w = r*n.
> Novamente, como n é primo com 2, 3 e 5 *e x*, conclui-se que n divide
> 111 (com q 1's), e portanto q>=p=k.
>
> On Sun, Jul 10, 2022 at 1:24 AM Ralph Costa Teixeira 
> wrote:
>
>> A chave: *os "restos parciais" que aparecem são exatamente os restos que
>> x, 10x, 100x,  deixam na divisão por n.*
>> ---///---
>>
>> MAIS SPOILERS ABAIXO
>>
>>
>> ...
>>
>>
>> 
>>
>>
>> ...
>>
>>
>> 
>>
>> Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
>> ---///---
>> LEMA:
>> (i) Dado n não divisível por 2 ou 5, existe algum número da forma
>> 111...111 que é múltiplo de n.
>> (ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
>> 111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
>> do período (fundamental) da dízima em 1/n.
>> PROVA:
>>
>> (i) Olhe os restos de 1, 11, 111, , ... na divisão por n. São n
>> possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
>> Isto significa que .. (com A dígitos) e 11...111 (com B dígitos,
>> B> ...1110 (A 1's e B 0's) = 111 * (10^B) é múltiplo de n. Mas
>> n não tem fator comum com aquele 10^B (pois não é divisível por 2 nem por
>> 5), portanto ...111 (com k=A-B dígitos) é divisível por n.
>>
>> (ii) Denote por P=111111 (com p dígitos) o menor daqueles caras com
>> apenas "1s" que é múltiplo de n, e denote por k o "período fundamental" na
>> dízima de 1/n.
>> Por um lado, como 9P=999=10^p-1 é múltiplo de n, temos 10^p *
>> (1/n) - 1/n inteiro. Mas isso significa que a parte decimal de 1/n "se
>> repete" de p em p dígitos, ou seja, que a dízima de 1/n tem período p. Em
>> particular, p>=k.
>> Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) - (1/n)
>> com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com m
>> inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
>> 9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
>> conclui-se que 111... (k 1's) tem que ser múltiplo de n, e portanto
>> k>=p.
>>
>> Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
>> 10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
>> decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
>> primeiro dígito!
>>
>> ---///---
>> Agora fica tudo bem simples:
>> a) Na notação acima, provamos que k=p, e n divide 111 com p
>> dígitos.
>> b) Seja q o período (fundamental) da dízima de B=x/n irredutível.
>>
>> Em primeiro lugar, provemos que q=k. Basicamente repetimos o que fizemos
>> no lema:
>> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)*10^w = r*n.
>> Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111
>> (com q 1's), e portanto q>=p=k.
>> -- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B
>> também é inteiro, ou seja, a dízima de B tem período k (e se inicia no
>> primeiro dígito!). Portanto k>=q.
>>
>> *Enfim, note que os tais "restos parciais" que aparecem são exatamente os
>> restos que x, 10x, 100x, , 10^q.x deixam na divisão por n. *A soma
>> desses caras vale (...)*x, que é divisível por n pois temos ali
>> q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a soma
>> dos novos restos tem que ser múltiplo de n tambem.
>>
>> Foi?
>>
>>
>> On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
>> rubens.vilhen...@gmail.com> wrote:
>>
>>> Gostaria de uma demonstração para o seguinte teorema.
>>> *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
>>> suponha que a expansão decimal de l/n tenha período k. Então n é um fator
>>> do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
>>> divisão obtida de cada fração irredutível x/n é um múltiplo de n.
>>> Comentário:
>>> Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 (
>>> k=6 1's).
>>> Essa parte consegui provar.
>>> Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
>>> {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
>>> Não consigo organizar uma sequência  de passos para a demonstração
>>> dos dois fatos.
>>> Agradeço qualquer ajuda.
>>> [[ ]]'s
>>>
>>> --
>>> Esta mensagem foi verificada pelo sistema de antivírus e
>>> acredita-se estar livre de perigo.
>>
>>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l] Ajuda em Repunits

2022-07-09 Por tôpico Claudio Buffara
Se n não é divisível por 2 e nem por 5, então 1/n = 0,a1a2...ak a1a2...ak
a1...  (dízima periódica simples de período k)
Daí (10^k)*n - n = a1a2...ak ==> (99...9)*n é inteiro (onde há k algarismos
9) ==> n é fator de 99...9 = 9*(11...1).
Mas n é primo com 3 ==> n | 11...1

Pra segunda parte, a ideia é tentar ver porque é verdade com exemplos
concretos.
Por exemplo, 1/7:
10*1 = 1*7 + 3
10*3 = 4*7 + 2
10*2 = 2*7 + 6
10*6 = 8*7 + 4
10*4 = 5*7 + 5
10*5 = 7*7 + 1
10*1 = 1*7 + 3  (e as equações se repetem a partir daqui)

1/13:
10*1 = 0*13 + 10
10*10 = 7*13 + 9
10*9 = 6*13 + 12
10*12 = 9*13 + 3
10*3 = 2*13 + 4
10*4 = 3*13 + 1
10*1 = 0*13 + 10 (idem)

Assim, no caso geral, pra calcular a representação de 1/n, as k primeiras
divisões sucessivas resultam em:
10*1 = a1*n + r1
10*r1 = a2*n + r2
10*r2 = a3*n + r3
...
10*r(k-1) = ak*n + rk

Como n é primo com 2 e 5, 1/n será uma dízima periódica simples, digamos de
período k.
Isso significa que rk, o resto da k-ésima divisão, será necessariamente
igual a 1, já que os dividendos (os algarismos aj que formam o período)
irão se repetir a partir da (k+1)-ésima equação.
Ou seja, a(k+1) = a1 e, portanto, r(k+1) = r1.

Somando as k equações, obtemos:
10*(1+r1+r2+ ...r(k-1)) = (a1+a2+a3...+ak)*n + (r1+r2+r3+...+rk).
Como rk = 1, isso fica:
10*(rk+r1+r2+ ...r(k-1)) = (a1+a2+a3...+ak)*n + (r1+r2+r3+...+rk) ==>
9*(rk+r2+...+r(k-1)) = (a1+a2+a3+...+ak)*n
Como n é primo com 3 (e, portanto, com 9), concluímos que n divide
r1+r2+...+rk.




On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
rubens.vilhen...@gmail.com> wrote:

> Gostaria de uma demonstração para o seguinte teorema.
> *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
> suponha que a expansão decimal de l/n tenha período k. Então n é um fator
> do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
> divisão obtida de cada fração irredutível x/n é um múltiplo de n.
> Comentário:
> Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 ( k=6
> 1's).
> Essa parte consegui provar.
> Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
> {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
> Não consigo organizar uma sequência  de passos para a demonstração
> dos dois fatos.
> Agradeço qualquer ajuda.
> [[ ]]'s
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l] Ajuda em Repunits

2022-07-09 Por tôpico Ralph Costa Teixeira
Argh, corrigindo um detalhe ali perto do fim:
-- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)**x**10^w = r*n.
Novamente, como n é primo com 2, 3 e 5 *e x*, conclui-se que n divide
111 (com q 1's), e portanto q>=p=k.

On Sun, Jul 10, 2022 at 1:24 AM Ralph Costa Teixeira 
wrote:

> A chave: *os "restos parciais" que aparecem são exatamente os restos que
> x, 10x, 100x,  deixam na divisão por n.*
> ---///---
>
> MAIS SPOILERS ABAIXO
>
>
> ...
>
>
> 
>
>
> ...
>
>
> 
>
> Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
> ---///---
> LEMA:
> (i) Dado n não divisível por 2 ou 5, existe algum número da forma
> 111...111 que é múltiplo de n.
> (ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
> 111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
> do período (fundamental) da dízima em 1/n.
> PROVA:
>
> (i) Olhe os restos de 1, 11, 111, , ... na divisão por n. São n
> possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
> Isto significa que .. (com A dígitos) e 11...111 (com B dígitos,
> B ...1110 (A 1's e B 0's) = 111 * (10^B) é múltiplo de n. Mas
> n não tem fator comum com aquele 10^B (pois não é divisível por 2 nem por
> 5), portanto ...111 (com k=A-B dígitos) é divisível por n.
>
> (ii) Denote por P=111111 (com p dígitos) o menor daqueles caras com
> apenas "1s" que é múltiplo de n, e denote por k o "período fundamental" na
> dízima de 1/n.
> Por um lado, como 9P=999=10^p-1 é múltiplo de n, temos 10^p *
> (1/n) - 1/n inteiro. Mas isso significa que a parte decimal de 1/n "se
> repete" de p em p dígitos, ou seja, que a dízima de 1/n tem período p. Em
> particular, p>=k.
> Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) - (1/n)
> com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com m
> inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
> 9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
> conclui-se que 111... (k 1's) tem que ser múltiplo de n, e portanto
> k>=p.
>
> Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
> 10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
> decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
> primeiro dígito!
>
> ---///---
> Agora fica tudo bem simples:
> a) Na notação acima, provamos que k=p, e n divide 111 com p
> dígitos.
> b) Seja q o período (fundamental) da dízima de B=x/n irredutível.
>
> Em primeiro lugar, provemos que q=k. Basicamente repetimos o que fizemos
> no lema:
> -- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)*10^w = r*n.
> Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111
> (com q 1's), e portanto q>=p=k.
> -- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B também
> é inteiro, ou seja, a dízima de B tem período k (e se inicia no primeiro
> dígito!). Portanto k>=q.
>
> *Enfim, note que os tais "restos parciais" que aparecem são exatamente os
> restos que x, 10x, 100x, , 10^q.x deixam na divisão por n. *A soma
> desses caras vale (...)*x, que é divisível por n pois temos ali
> q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a soma
> dos novos restos tem que ser múltiplo de n tambem.
>
> Foi?
>
>
> On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
> rubens.vilhen...@gmail.com> wrote:
>
>> Gostaria de uma demonstração para o seguinte teorema.
>> *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
>> suponha que a expansão decimal de l/n tenha período k. Então n é um fator
>> do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
>> divisão obtida de cada fração irredutível x/n é um múltiplo de n.
>> Comentário:
>> Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 (
>> k=6 1's).
>> Essa parte consegui provar.
>> Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
>> {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
>> Não consigo organizar uma sequência  de passos para a demonstração
>> dos dois fatos.
>> Agradeço qualquer ajuda.
>> [[ ]]'s
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>> acredita-se estar livre de perigo.
>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



Re: [obm-l] Ajuda em Repunits

2022-07-09 Por tôpico Ralph Costa Teixeira
A chave: *os "restos parciais" que aparecem são exatamente os restos que x,
10x, 100x,  deixam na divisão por n.*
---///---

MAIS SPOILERS ABAIXO


...





...




Acho que facilita bastante pensar no "período" de 1/n de outro jeito:
---///---
LEMA:
(i) Dado n não divisível por 2 ou 5, existe algum número da forma 111...111
que é múltiplo de n.
(ii) Se n não for divisível por 2, 3 ou 5, o *menor* número do tipo
111...111 que é múltiplo de n tem k dígitos, onde k é exatamente o tamanho
do período (fundamental) da dízima em 1/n.
PROVA:

(i) Olhe os restos de 1, 11, 111, , ... na divisão por n. São n
possibilidades, de 0 a n-1, então alguma hora algum resto tem que repetir.
Isto significa que .. (com A dígitos) e 11...111 (com B dígitos,
B=k.
Por outro lado, sendo k o período fundamental, temos 10^k * (1/n) - (1/n)
com número finito de casas decimais, ou seja, (10^k-1)/n = m/10^z com m
inteiro, e z=número de casas decimais que "sobraram". Mas daqui vem
9*(111...111)*10^z = m*n (com k dígitos 1s). Como n é primo com 2, 3 e 5,
conclui-se que 111... (k 1's) tem que ser múltiplo de n, e portanto
k>=p.

Note um efeito colateral disso tudo: provamos que 10^k*(1/n)- 1/n =
10^p*(1/n)-1/n = inteiro. Assim aquele z vale 0, ou seja, não tem "casas
decimais que sobram" -- a dízima periódica do 1/n se inicia logo no
primeiro dígito!

---///---
Agora fica tudo bem simples:
a) Na notação acima, provamos que k=p, e n divide 111 com p dígitos.
b) Seja q o período (fundamental) da dízima de B=x/n irredutível.

Em primeiro lugar, provemos que q=k. Basicamente repetimos o que fizemos no
lema:
-- Sabemos que 10^q*B-B=r/10^w, portanto 9*(111...)*10^w = r*n.
Novamente, como n é primo com 2, 3 e 5, conclui-se que n divide 111
(com q 1's), e portanto q>=p=k.
-- Por outro lado, como (10^k-1)/n é inteiro, (10^k-1)*x/n=10^k*B-B também
é inteiro, ou seja, a dízima de B tem período k (e se inicia no primeiro
dígito!). Portanto k>=q.

*Enfim, note que os tais "restos parciais" que aparecem são exatamente os
restos que x, 10x, 100x, , 10^q.x deixam na divisão por n. *A soma
desses caras vale (...)*x, que é divisível por n pois temos ali
q=k=p dígitos 1. Por isso, ao dividir esses restos parciais por n, a soma
dos novos restos tem que ser múltiplo de n tambem.

Foi?


On Sat, Jul 9, 2022 at 7:16 PM Rubens Vilhena Fonseca <
rubens.vilhen...@gmail.com> wrote:

> Gostaria de uma demonstração para o seguinte teorema.
> *Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
> suponha que a expansão decimal de l/n tenha período k. Então n é um fator
> do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
> divisão obtida de cada fração irredutível x/n é um múltiplo de n.
> Comentário:
> Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 ( k=6
> 1's).
> Essa parte consegui provar.
> Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
> {10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
> Não consigo organizar uma sequência  de passos para a demonstração
> dos dois fatos.
> Agradeço qualquer ajuda.
> [[ ]]'s
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.



[obm-l] Ajuda em Repunits

2022-07-09 Por tôpico Rubens Vilhena Fonseca
Gostaria de uma demonstração para o seguinte teorema.
*Teorema*. Seja n um inteiro positivo não divisível por 2, 3 ou 5, e
suponha que a expansão decimal de l/n tenha período k. Então n é um fator
do inteiro 111 ... 11 (k 1 's). Além disso, a soma dos restos parciais na
divisão obtida de cada fração irredutível x/n é um múltiplo de n.
Comentário:
Pelo que entendi, se 1/13  tem período k =6. Então 13  divide 11 ( k=6
1's).
Essa parte consegui provar.
Quanto à segunda parte  para 1/13 os resto da divisão sem repetição são
{10, 9, 12, 3, 4, 1}. Então 10+9+12+3+4+1= 13q . (Não soube provar)
Não consigo organizar uma sequência  de passos para a demonstração dos dois
fatos.
Agradeço qualquer ajuda.
[[ ]]'s

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.