Op 16 mrt 2014, om 16:45 heeft big stone het volgende geschreven:
Hi Edzard,
I just reproduced your test.
Indeed :
- you probably blew-up everything running SQL sudoku on this planet :
. 'hardest1' in under 2 seconds on my machine,
. 'eastermonster1' in 43ms.
- with Norvig's method and available SQLite syntax.
Each of these feats is jaw-dropping.
Regards,
_______________________________________________
sqlite-users mailing list
sqlite-users@sqlite.org
http://sqlite.org:8080/cgi-bin/mailman/listinfo/sqlite-users
Thanks a lot,
just some nuance, (being Python adept myself) here is a summary of my
timings. From left to right: the time in seconds for Norvig's Python
script and my SQL script in two versions, without and with ordering
the digits by most used.
sudoku python sql sql+zsort
easy1 .067 .068 .069
sqlite1 .082 .095 .197
hard1 445. 900. .085
hola1 .058 .075 .084
eastermonster1 .259 .762 .079
hardest1 .282 2.066 3.990
As the difference is in milliseonds I changed the Python script to
include the printing of the output in the timing. Below is this version
## Solve Every Sudoku Puzzle
## See http://norvig.com/sudoku.html
## Throughout this program we have:
## r is a row, e.g. 'A'
## c is a column, e.g. '3'
## s is a square, e.g. 'A3'
## d is a digit, e.g. '9'
## u is a unit, e.g. ['A1','B1','C1','D1','E1','F1','G1','H1','I1']
## grid is a grid,e.g. 81 non-blank chars, e.g. starting with '.
18...7...
## values is a dict of possible values, e.g. {'A1':'12349',
'A2':'8', ...}
def cross(A, B):
"Cross product of elements in A and elements in B."
return [a+b for a in A for b in B]
digits = '123456789'
rows = 'ABCDEFGHI'
cols = digits
squares = cross(rows, cols)
unitlist = ([cross(rows, c) for c in cols] +
[cross(r, cols) for r in rows] +
[cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in
('123','456','789')])
units = dict((s, [u for u in unitlist if s in u])
for s in squares)
peers = dict((s, set(sum(units[s],[]))-set([s]))
for s in squares)
################ Unit Tests ################
def test():
"A set of tests that must pass."
assert len(squares) == 81
assert len(unitlist) == 27
assert all(len(units[s]) == 3 for s in squares)
assert all(len(peers[s]) == 20 for s in squares)
assert units['C2'] == [['A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2',
'H2', 'I2'],
['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7',
'C8', 'C9'],
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1',
'C2', 'C3']]
assert peers['C2'] == set(['A2', 'B2', 'D2', 'E2', 'F2', 'G2',
'H2', 'I2',
'C1', 'C3', 'C4', 'C5', 'C6', 'C7',
'C8', 'C9',
'A1', 'A3', 'B1', 'B3'])
print 'All tests pass.'
################ Parse a Grid ################
def parse_grid(grid):
"""Convert grid to a dict of possible values, {square: digits}, or
return False if a contradiction is detected."""
## To start, every square can be any digit; then assign values
from the grid.
values = dict((s, digits) for s in squares)
for s,d in grid_values(grid).items():
if d in digits and not assign(values, s, d):
return False ## (Fail if we can't assign d to square s.)
return values
def grid_values(grid):
"Convert grid into a dict of {square: char} with '0' or '.' for
empties."
chars = [c for c in grid if c in digits or c in '0.']
assert len(chars) == 81
return dict(zip(squares, chars))
################ Constraint Propagation ################
def assign(values, s, d):
"""Eliminate all the other values (except d) from values[s] and
propagate.
Return values, except return False if a contradiction is
detected."""
other_values = values[s].replace(d, '')
if all(eliminate(values, s, d2) for d2 in other_values):
return values
else:
return False
def eliminate(values, s, d):
"""Eliminate d from values[s]; propagate when values or places <=
2.
Return values, except return False if a contradiction is
detected."""
if d not in values[s]:
return values ## Already eliminated
values[s] = values[s].replace(d,'')
## (1) If a square s is reduced to one value d2, then eliminate
d2 from the peers.
if len(values[s]) == 0:
return False ## Contradiction: removed last value
elif len(values[s]) == 1:
d2 = values[s]
if not all(eliminate(values, s2, d2) for s2 in peers[s]):
return False
## (2) If a unit u is reduced to only one place for a value d,
then put it there.
for u in units[s]:
dplaces = [s for s in u if d in values[s]]
if len(dplaces) == 0:
return False ## Contradiction: no place for this value
elif len(dplaces) == 1:
# d can only be in one place in unit; assign it there
if not assign(values, dplaces[0], d):
return False
return values
################ Display as 2-D grid ################
def display(values):
"Display these values as a 2-D grid."
width = 1+max(len(values[s]) for s in squares)
line = '+'.join(['-'*(width*3)]*3)
for r in rows:
print ''.join(values[r+c].center(width)+('|' if c in '36'
else '')
for c in cols)
if r in 'CF': print line
print
################ Search ################
i=0
def solve(grid):
global i
i = 0
values = search(parse_grid(grid))
print i
return values
def search(values):
global i
i += 1
"Using depth-first search and propagation, try all possible
values."
if values is False:
return False ## Failed earlier
if all(len(values[s]) == 1 for s in squares):
return values ## Solved!
## Chose the unfilled square s with the fewest possibilities
n,s = min((len(values[s]), s) for s in squares if len(values[s])
> 1)
###print n, s, tuple((len(values[s]), s) for s in squares if
len(values[s]) > 1)
return some(search(assign(values.copy(), s, d))
for d in values[s])
################ Utilities ################
def some(seq):
"Return some element of seq that is true."
for e in seq:
if e: return e
return False
def from_file(filename, sep='\n'):
"Parse a file into a list of strings, separated by sep."
return file(filename).read().strip().split(sep)
def shuffled(seq):
"Return a randomly shuffled copy of the input sequence."
seq = list(seq)
random.shuffle(seq)
return seq
################ System test ################
import time, random
def solve_all(grids, name='', showif=0.0):
"""Attempt to solve a sequence of grids. Report results.
When showif is a number of seconds, display puzzles that take
longer.
When showif is None, don't display any puzzles."""
def time_solve(grid):
start = time.clock()
values = solve(grid)
t = time.clock()-start
## Display puzzles that take long enough
if 1 or showif is not None and t > showif:
display(grid_values(grid))
if values: display(values)
print '(%.2f seconds)\n' % t
return (t, solved(values))
times, results = zip(*[time_solve(grid) for grid in grids])
N = len(grids)
if N > 1:
print "Solved %d of %d %s puzzles (avg %.2f secs (%d Hz), max
%.2f secs)." % (
sum(results), N, name, sum(times)/N, N/sum(times),
max(times))
def solved(values):
"A puzzle is solved if each unit is a permutation of the digits 1
to 9."
def unitsolved(unit): return set(values[s] for s in unit) ==
set(digits)
return values is not False and all(unitsolved(unit) for unit in
unitlist)
def random_puzzle(N=17):
"""Make a random puzzle with N or more assignments. Restart on
contradictions.
Note the resulting puzzle is not guaranteed to be solvable, but
empirically
about 99.8% of them are solvable. Some have multiple solutions."""
values = dict((s, digits) for s in squares)
for s in shuffled(squares):
if not assign(values, s, random.choice(values[s])):
break
ds = [values[s] for s in squares if len(values[s]) == 1]
if len(ds) >= N and len(set(ds)) >= 8:
return ''.join(values[s] if len(values[s])==1 else '.'
for s in squares)
return random_puzzle(N) ## Give up and make a new puzzle
grid1 =
'003020600900305001001806400008102900700000008006708200002609500800203009005010300
'
grid2 =
'4
.....
8.5.3
..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......'
easy1 =
'53
..
7
....
6
..195....98....6.8...6...34..8.3..17...2...6.6....28....419..5....8..79'
sqlite1 =
'1
....
7.9
..
3..2...8..96..5....53..9...1..8...26....4...3......1..4......7..7...3..'
hard1 = '.....
6
....
59.....82....8....45........3........6..3.54...325..6..................'
hola1 =
'4.2
....
3.1
..6.5.299.....1......42....8.9.1.5....85......3.....861.5.4..2.4....5.7'
eastermonster1 =
'1
.......
2.9.4
...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1'
hardest1 =
'8
..........
36......7..9.2...5...7.......457.....1...3...1....68..85...1..9....4..'
if __name__ == '__main__':
test()
###solve_all(from_file("easy50.txt", '========'), "easy", None)
###solve_all(from_file("top95.txt"), "hard", None)
###solve_all(from_file("hardest.txt"), "hardest", None)
###solve_all([random_puzzle() for _ in range(99)], "random", 100.0)
import time; t0=time.time()
name = 'hardest1'
print name
solve_all([eval(name)])
print time.time()-t0
## References used:
## http://www.scanraid.com/BasicStrategies.htm
## http://www.sudokudragon.com/sudokustrategy.htm
## http://www.krazydad.com/blog/2005/09/29/an-index-of-sudoku-strategies/
##
http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/peter_cock/python/sudoku/
_______________________________________________
sqlite-users mailing list
sqlite-users@sqlite.org
http://sqlite.org:8080/cgi-bin/mailman/listinfo/sqlite-users