The attached file contains my attempt to update this test and port it to
new test driver.
Here I implemented special class to be used as Size (some integral type)
in the generate_n algorithm. I plan to update the lib.alg.fill test
in the same way.
With best wishes,
Anton Pevtsov
/***************************************************************************
*
* generate.cpp - test exercising 25.2.6 [lib.alg.generate]
*
* $Id: //stdlib/dev/tests/stdlib/algorithm/generate.cpp#13 $
*
***************************************************************************
*
* Copyright (c) 1994-2005 Quovadx, Inc. All Rights Reserved.
*
* This computer software is owned by Quovadx, Inc. and is protected by
* U.S. copyright laws and other laws and by international treaties.
* This computer software is furnished by Quovadx, Inc., pursuant to a
* written license agreement and may be used, copied, transmitted, and
* stored only in accordance with the terms of such license agreement and
* with the inclusion of the above copyright notice. This computer
* software or any other copies thereof may not be provided or otherwise
* made available to any other person.
*
*
* U.S. Government Restricted Rights.
*
* This computer software: (a) was developed at private expense and is in
* all respects the proprietary information of Quovadx, Inc.; (b) was not
* developed with government funds; (c) is a trade secret of Quovadx,
* Inc. for all purposes of the Freedom of Information Act; and (d) is a
* commercial item and thus, pursuant to Section 12.212 of the Federal
* Acquisition Regulations (FAR) and DFAR Supplement Section 227.7202,
* Government's use, duplication or disclosure of the computer software
* is subject to the restrictions set forth by Quovadx, Inc.
*
**************************************************************************/
#include <algorithm> // for generate
#include <cstddef> // for size_t
#include <alg_test.h>
#include <driver.h> // for rw_test()
/**************************************************************************/
// this is the value of the last X assigned by generate<X>
static int last_val = 0;
template <class T>
struct generator {
typedef T& reference;
reference operator() () const {
static char c;
return _RWSTD_REINTERPRET_CAST (reference, c);
}
};
_RWSTD_SPECIALIZED_CLASS
struct generator<X> {
X* buf_;
int i_;
generator (X* buf, int i) : buf_(buf), i_(i) { }
// default-construct a new X at _buf[_i] to be assigned at
// whatever next location std::generate<> () picks next...
X& operator() () {
X* new_x = new (buf_ + i_) X ();
last_val = new_x->val_;
return *new_x;
}
};
// simple integral type to be used instead of size_t
struct IntegralType
{
IntegralType(std::size_t n) : N_(n) { }
operator int() const { return (int) N_; }
IntegralType& operator --() { --N_; return *this; }
IntegralType& operator ++() { ++N_; return *this; }
private:
std::size_t N_;
};
/**************************************************************************/
_RWSTD_NAMESPACE (std) {
// disable explicit instantiation for compilers (like MSVC)
// that can't handle it
#ifndef _RWSTD_NO_EXPLICIT_INSTANTIATION
template
void generate (FwdIter<assign<base<> > >, FwdIter<assign<base<> > >,
generator<assign<base<> > >);
template
void generate_n (OutputIter<assign<base<> > >, std::size_t,
generator<assign<base<> > >);
#endif // _RWSTD_NO_EXPLICIT_INSTANTIATION
} // namespace std
/**************************************************************************/
// exercises std::generate()
template <class GenIterator, class T>
void test_generate (std::size_t N,
const GenIterator& gen_iter,
const T* )
{
static const char* const itname = type_name (gen_iter, (T*) 0);
static const char* const genname = "generator";
rw_info (0, 0, 0,
"void std::generate (%s, %1$s, %s)", itname, genname);
// generate sequential values for each default constructed T
T::gen_ = gen_seq;
// use ::operator new() to prevent default initialization
T *buf = _RWSTD_STATIC_CAST (T*, ::operator new (N * sizeof (T)));
// default-construct the first T at buf[0]
new (buf) T ();
for (std::size_t i = 0; i < N; ++i) {
// exercise 25.2.6, std::generate<> ()
std::size_t last_n_op_assign = T::n_total_op_assign_;
T* const buf_end = buf + i + 1;
const GenIterator begin =
make_iter (buf, buf, buf_end, gen_iter);
const GenIterator end =
make_iter (buf_end, buf_end, buf_end, gen_iter);
generator<T> gen_func = generator<T> (buf, i);
std::generate (begin, end, gen_func);
bool success = true;
// verify 25.2.6, p2
std::size_t j = 0;
for ( ; j != i; ++j) {
success = (begin.cur_ + j)->val_ == int (last_val - i + j);
if (!success)
break;
}
rw_assert (success, 0, __LINE__,
"%zu. std::generate<> (): buf[%zu]: %d != %d",
i + 1, j, last_val - i + j, (begin.cur_ + j)->val_ );
if (!success)
break;
// verify 25.2.6, p3
success = T::n_total_op_assign_ - last_n_op_assign == i + 1;
rw_assert (success, 0, __LINE__,
"%zu. std::generate<> (): complexity: %zu != %zu",
i + 1, T::n_total_op_assign_ - last_n_op_assign, i + 1);
if (!success)
break;
}
::operator delete (buf);
}
// exercises std::generate_n()
template <class GenIterator, class Size, class T>
void test_generate_n (std::size_t N,
const GenIterator& gen_iter,
const Size& ,
const T* )
{
static const char* const itname = type_name (gen_iter, (T*) 0);
static const char* const szname = "Size";
static const char* const genname = "generator";
rw_info (0, 0, 0,
"void std::generate_n (%s, %s, %s)", itname, szname, genname);
// generate sequential values for each default constructed T
T::gen_ = gen_seq;
// use ::operator new() to prevent default initialization
T *buf = _RWSTD_STATIC_CAST (T*, ::operator new (N * sizeof (T)));
// default-construct the first T at buf[0]
new (buf) T ();
for (std::size_t i = 0; i <= N; ++i) {
// exercise 25.2.6, std::generate_n<> ()
std::size_t last_n_op_assign = T::n_total_op_assign_;
T* const buf_end = buf + i + 1;
const GenIterator begin =
make_iter (buf, buf, buf_end, gen_iter);
Size sz(i);
generator<T> gen_func = generator<T> (buf, i ? i - 1 : 0);
std::generate_n (begin, sz, gen_func);
bool success = true;
// verify 25.2.6, p2
std::size_t j = 0;
for ( ; j != i; ++j) {
success = (begin.cur_ + j)->val_ == int (last_val - i + j + 1);
if (!success)
break;
}
rw_assert (success, 0, __LINE__,
"%zu. std::generate_n<> (): buf[%zu]: %d != %d",
i + 1, j, last_val - i + j + 1, (begin.cur_ + j)->val_ );
if (!success)
break;
// verify 25.2.6, p3
success = T::n_total_op_assign_ - last_n_op_assign == i;
rw_assert (success, 0, __LINE__,
"%zu. std::generate_n<> (): complexity: %zu != %zu",
i + 1, T::n_total_op_assign_ - last_n_op_assign, i);
if (!success)
break;
}
::operator delete (buf);
}
/**************************************************************************/
/* extern */ int rw_opt_nloops = 32; // --nloops
/* extern */ int rw_opt_no_output_iter; // --no-OutputIterator
/* extern */ int rw_opt_no_fwd_iter; // --no-ForwardIterator
/* extern */ int rw_opt_no_bidir_iter; // --no-BidirectionalIterator
/* extern */ int rw_opt_no_rnd_iter; // --no-RandomAccessIterator
static void
test_generate (const std::size_t N)
{
rw_info (0, 0, 0,
"template <class %s, class %s> "
"void std::generate (%1$s, %1$s, const %2$s&)",
"ForwardIterator", "T");
if (rw_opt_no_fwd_iter) {
rw_note (0, __FILE__, __LINE__, "ForwardIterator test disabled");
}
else {
test_generate (N, FwdIter<X>(), (X*)0);
}
if (rw_opt_no_bidir_iter) {
rw_note (0, __FILE__, __LINE__, "BidirectionalIterator test disabled");
}
else {
test_generate (N, BidirIter<X>(), (X*)0);
}
if (rw_opt_no_rnd_iter) {
rw_note (0, __FILE__, __LINE__, "RandomAccessIterator test disabled");
}
else {
test_generate (N, RandomAccessIter<X>(), (X*)0);
}
}
/**************************************************************************/
static void
test_generate_n (const std::size_t N)
{
rw_info (0, 0, 0,
"template <class %s, class %s, class %s> "
"void std::generate_n (%1$s, %2$s, const %3$s&)",
"OutputIterator", "Size", "T");
if (rw_opt_no_output_iter) {
rw_note (0, __FILE__, __LINE__, "OutputIterator test disabled");
}
else {
test_generate_n (N, OutputIter<X>(0, 0, 0), IntegralType(0), (X*)0);
}
if (rw_opt_no_fwd_iter) {
rw_note (0, __FILE__, __LINE__, "ForwardIterator test disabled");
}
else {
test_generate_n (N, FwdIter<X>(), IntegralType(0), (X*)0);
}
if (rw_opt_no_bidir_iter) {
rw_note (0, __FILE__, __LINE__, "BidirectionalIterator test disabled");
}
else {
test_generate_n (N, BidirIter<X>(), IntegralType(0), (X*)0);
}
if (rw_opt_no_rnd_iter) {
rw_note (0, __FILE__, __LINE__, "RandomAccessIterator test disabled");
}
else {
test_generate_n (N, RandomAccessIter<X>(), IntegralType(0), (X*)0);
}
}
/**************************************************************************/
static int
run_test (int, char*[])
{
// check that the number of loops is non-negative
rw_fatal (-1 < rw_opt_nloops, 0, 0,
"number of loops must be non-negative, got %d",
rw_opt_nloops);
const std::size_t N = std::size_t (rw_opt_nloops);
test_generate (N);
test_generate_n (N);
return 0;
}
/**************************************************************************/
int main (int argc, char *argv[])
{
return rw_test (argc, argv, __FILE__,
"lib.alg.generate",
0 /* no comment */, run_test,
"|-nloops# "
"|-no-OutputIterator# "
"|-no-ForwardIterator# "
"|-no-BidirectionalIterator# "
"|-no-RandomAccessIterator#",
&rw_opt_nloops,
&rw_opt_no_output_iter,
&rw_opt_no_fwd_iter,
&rw_opt_no_bidir_iter,
&rw_opt_no_rnd_iter);
}