http://www.greencarcongress.com/2013/12/20131216-mgtg.html
Converting glycerol from biodiesel production into bio-gasoline
16 December 2013
A team at the University of Idaho has demonstrated that glycerol, a
byproduct from biodiesel production, could be used as a substrate for
producing drop-in gasoline-range biofuel. In a paper published in the
ACS journal Energy & Fuels, Guanqun Luo and Armando G. McDonald describe
their study of converting methanol (MTG) and a mixture of methanol and
glycerol (MGTG) into gasoline-range hydrocarbons using a bench-top,
fixed-bed microreactor.
The MTG- and MGTG-generated liquids showed a similar composition, mainly
methylbenzenes, to regular gasoline, and composition changed as the
reaction proceeded to favor heavier aromatics.
The technology of converting methanol into gasoline was discovered
and commercialized more than 3 decades ago. … Currently, the increasing
consumption and limited reserves of crude oil, as well as the problem of
CO2 emissions mainly caused by the usage of fossil fuels, have led to a
growing interest in the production of non-fossil-based energy. Methanol
can be made from biomass that is abundant, renewable, and globally
available, via synthesis gas (syngas), and further converted into
gasoline; therefore, the MTG process is receiving renewed attention today.
Over the years, a variety of zeolites have been tested in the MTG
process, including SAPO-34, HY, H-β, and ZSM-5. The lattermost catalyst,
ZSM-5, is widely accepted to be the most effective and selective
catalyst to produce high-quality gasoline, which is mainly attributed to
its network structure. The performance of the MTG process via ZSM-5 can
be influenced by several factors, such as temperature and pressure. A
major problem of the MTG process is deactivation of the catalyst because
of the deposition of the carbonaceous residue; thus, it is still a key
area of research to improve the catalyst lifetime by optimizing the
catalyst pretreatment method and/or reaction conditions.
… For the conversion of glycerol into fuels, most research focuses
on the gasification of glycerol to produce syngas that can be further
converted into gasoline or diesel via Fischer−Tropsch synthesis (FTS).
Nevertheless, very little research into the direct conversion of
glycerol to gasoline-range hydrocarbons has been reported.
—Luo and McDonald
Earlier work had found that a reacting compound with an effective H/C
ratio below 2—such as glycerol which has an effective H/C ratio of
0.6—rendered the excessive deactivation of zeolite catalysts in the
conversion. Luo and McDonald noted that adding methanol—which has an
effective H/C ratio of 2—into glycerol could increase the combined H/C
of the feed and then improve the activity of the catalyst.
In addition, they added, using a mixture of methanol and glycerol as
feedstock for a MTG-like process may also reduce the costs for cleaning
the crude glycerol from the transesterification process, because
excessive methanol is usually used to improve the production of biodiesel.
In their study using a ZSM-5 catalyst, they found that the best MTG
catalytic performance was achieved at 425 °C, at which the product yield
and catalyst lifetime were 11.0 wt % and 20 h, respectively. Generally,
the methanol conversion rate and the total liquid and organic-phase
yield rates decreased with the reaction time at each temperature. In
addition to gasoline-range aromatics, some oxygenates were also detected
in the extracted aqueous phase from the MGTG process.
The best MGTG catalytic performance was achieved at 500 °C with 10%
glycerol in methanol, at which the product yield and catalyst lifetime
were 14.9 wt % and 8 h, respectively. The higher glycerol content
disfavored the production of aromatics but favored oxygenates. With an
increasing reaction time at all reaction conditions, methanol and
glycerol conversion rates were ≥99%.
While they demonstrated the successful conversion of glycerol to
bio-gasoline, they authors observed that further work is required to
increase the catalyst lifetime.
Resources
Guanqun Luo and Armando G. McDonald (2013) “Conversion of Methanol
and Glycerol into Gasoline via ZSM‐5 Catalysis.” Energy & Fuels doi:
10.1021/ef401993x
December 16, 2013 in Biodiesel, Biogasoline, Catalysts, Methanol |
Permalink | Comments (1) | TrackBack (0)
TrackBack
TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c4fbe53ef019b030df6c9970d
--
Darryl McMahon
Failure is not an option;
it comes standard.
---
This email is free from viruses and malware because avast! Antivirus protection
is active.
http://www.avast.com
_______________________________________________
Sustainablelorgbiofuel mailing list
Sustainablelorgbiofuel@lists.sustainablelists.org
http://lists.eruditium.org/cgi-bin/mailman/listinfo/sustainablelorgbiofuel