Hi guays, 

I am having a similar problem, I am trying to compile the following theano 
function:

layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=4)


salidas_capa3 = theano.function(
    [index],
    layer3.y_pred,
    givens={
        x: test_set_x[index * batch_size: (index + 1) * batch_size]
    }
)



Which I call in the test part:


for i in range(n_test_batches):
    test_losses = [test_model(i)]
    y_pred_test = salidas_capa3[test_model(i)]
    print y_pred_test
    test_score = numpy.mean(test_losses)



And I am getting the next error:


Traceback (most recent call last):
  File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 416, in <module>
    evaluate_lenet5()
  File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 392, in 
evaluate_lenet5
    y_pred_test = salidas_capa3[test_model(i)]
  File 
"/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
 line 545, in __getitem__
    return self.value[item]
  File 
"/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
 line 480, in __getitem__
    s = finder[item]
TypeError: unhashable type: 'numpy.ndarray'




Anyone could guide me?


Here is my code:


class LeNetConvPoolLayer(object):
    """Pool Layer of a convolutional network """

    def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.
        :type rng: numpy.random.RandomState
        :param rng: a random number generator used to initialize weights
        :type input: theano.tensor.dtensor4
        :param input: symbolic image tensor, of shape image_shape
        :type filter_shape: tuple or list of length 4
        :param filter_shape: (number of filters, num input feature maps,
                              filter height, filter width)
        :type image_shape: tuple or list of length 4
        :param image_shape: (batch size, num input feature maps,
                             image height, image width)
        :type poolsize: tuple or list of length 2
        :param poolsize: the downsampling (pooling) factor (#rows, #cols)
        """

        assert image_shape[1] == filter_shape[1]                            #El 
numero de feature maps sea igual en ambas variables
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])                                
#el numero de neuronas en la capa anterio
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size

        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /          
#El numero de neuronas de salida: numero de filtros*alto*ancho del 
filtro/poolsize(tam*tam)
                   numpy.prod(poolsize))
        # initialize weights with random weights

        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            numpy.asarray(
                rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                # Se calcula asi el W_bound por la funcion  de activacion 
tangencial.
                # Los pesos dependen del tamanyo del filtro(neuronas)

                dtype=theano.config.floatX  # Para que sea valido en gpu
            ),
            borrow=True
        )

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(
            input=input,
            filters=self.W,
            filter_shape=filter_shape,
            image_shape=image_shape
        )

        # downsample each feature map individually, using maxpooling
        pooled_out = downsample.max_pool_2d(
            input=conv_out,
            ds=poolsize,
            ignore_border=True
        )

        print pooled_out

        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias will
        # thus be broadcasted across mini-batches and feature map
        # width & height
        self.output = theano.tensor.nnet.relu((pooled_out + 
self.b.dimshuffle('x', 0, 'x', 'x')) , alpha=0)


        # store parameters of this layer
        self.params = [self.W, self.b]

        # keep track of model input
        self.input = input

        self.conv_out=conv_out
        self.pooled_out=pooled_out

        self.salidas_capa = [self.conv_out, self.pooled_out, self.output]



def evaluate_lenet5(learning_rate=0.001, n_epochs=2, nkerns=[48, 96], 
batch_size=20):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(2509)

    train_set_x, test_set_x, train_set_y, test_set_y, valid_set_x, valid_set_y 
=  Load_casia_Data2()

    train_set_x = theano.shared(numpy.array(train_set_x,  dtype='float64',))
    test_set_x = theano.shared(numpy.array(test_set_x, dtype='float64'))
    train_set_y = theano.shared(numpy.array(train_set_y,  dtype='int32'))
    test_set_y = theano.shared(numpy.array(test_set_y, dtype='int32'))
    valid_set_x = theano.shared(numpy.array(valid_set_x, dtype='float64'))
    valid_set_y = theano.shared(numpy.array(valid_set_y, dtype='int32'))

    print("n_batches:")

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    print("n_train_batches: %d" % n_train_batches)
    print("n_valid_batches: %d" % n_valid_batches)
    print("n_test_batches: %d" % n_test_batches)

    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 3, 104, 52))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape(batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 3, 104, 52),
        filter_shape=(nkerns[0], 3, 5, 5),
        poolsize=(2, 2)
    )

    salidas_capa0 = theano.function(
    [index],
    layer0.salidas_capa,
    givens={
    x: test_set_x[index * batch_size: (index + 1) * batch_size],
    }
    )


    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 50, 24),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )

    salidas_capa1 = theano.function(
    [index],
    layer1.salidas_capa,
    givens={
    x: test_set_x[index * batch_size: (index + 1) * batch_size],
    }
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 23 * 10,
        n_out=100,
        activation=T.nnet.relu
    )

    # classify the values of the fully-connected sigmoidal layer
    svm = SVC()


    layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=4)


    salidas_capa3 = theano.function(
        [index],
        layer3.y_pred,
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size]
        }
    )

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],      
#Los given son algo para la gpu
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )


    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-1


    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many minibatche before checking the network
    # on the validation set; in this case we check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    lista_coste = []

    epoch = 0
    done_looping = False

    # save_file = 
open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas0.pkl', 'wb')
    # save_file1 = 
open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb0.pkl', 'wb')
    # save_file2 = 
open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas1.pkl', 'wb')
    # save_file3 = 
open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb1.pkl', 'wb')

    print 'n_train_batches'
    print n_train_batches
    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print('training @ iter = ', iter)
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set

                validation_losses = [validate_model(i) for i
                                     in range(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss * \
                            improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    w0_test = layer0.W.get_value()
                    b0_test = layer0.b.get_value()

                    w1_test = layer1.W.get_value()
                    b1_test = layer1.b.get_value()

                    w2_test = layer2.W.get_value()
                    b2_test = layer2.b.get_value()




            if patience <= iter:
                done_looping = True
                break


    ###############################
    ###    TESTING MODEL        ###
    ###############################
    #Aqui se tiene que cargar la red

    layer0.W.set_value(w0_test)
    layer0.b.set_value(b0_test)

    layer1.W.set_value(w1_test)
    layer1.b.set_value(b1_test)

    layer2.W.set_value(w2_test)
    layer2.b.set_value(b2_test)

    # test it on the test set
    for i in range(n_test_batches):
        test_losses = [test_model(i)]
        y_pred_test = salidas_capa3[test_model(i)]
        print y_pred_test
        test_score = numpy.mean(test_losses)

    print((' test error of best model %f %%') % (test_score * 100.))


    end_time = timeit.default_timer()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))

    print("start time: %d" % start_time)
    print("end_time: %d" % end_time)

    # print(('The code for file ' +
    #        os.path.split(__file__)[1] +
    #        ' ran for %.2fm' % ((end_time - start_time) / 60.)), 
file=sys.stderr)




if __name__ == '__main__':
    evaluate_lenet5()


def experiment(state, channel):
    evaluate_lenet5(state.learning_rate, dataset=state.dataset)






Thanks in advance.


Regards.







El martes, 28 de mayo de 2013, 23:56:29 (UTC+2), Pascal Lamblin escribió:
>
> On Wed, May 29, 2013, Анатолий wrote: 
> > That's how i define test values: 
> > 
> > ishape = (288, 384) 
> > batch_size = numpy.int16(batch_size) 
> > index = T.lscalar().tag.test_value = numpy.int16(0) 
> >  x = T.matrix('x').tag.test_value = numpy.random.rand(batch_size, 
> > numpy.prod(ishape)).astype(dtype=theano.config.floatX) 
> >  y = T.ivector('y').tag.test_value = numpy.random.randint(0,2, 
> > size=batch_size).astype(dtype=numpy.int16) 
>
> In fact, as Olivier Delalleau pointed it, here is your problem. Here, 
> you assign the test value to the name 'x', rather than assigning the 
> symbolic variable. You should do the following instead: 
>
> # In two different statements: 
> # first create 'index' as a symbolic variable 
> index = T.lscalar() 
> # then assign a test value to it 
> index.tag.test_value = numpy.int16(0) 
>
> # same thing for the other variables: 
> x = T.matrix('x') 
> x.tag.test_value = numpy.random.rand(batch_size, 
> numpy.prod(ishape)).astype(dtype=theano.config.floatX) 
>
> y = T.ivector('y') 
> y.tag.test_value = numpy.random.randint(0, 2, 
> size=batch_size).astype(dtype=numpy.int16) 
>
> Hope this helps, 
> -- 
> Pascal 
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to