On Wed, Aug 31, 2016, Jesse Livezey wrote:
> @Fred and Pascal, I think Beatriz's question was answered in another thread.

Thanks, I had not looked at the date of the original e-mail.

> 
> On Wednesday, August 31, 2016 at 12:58:11 PM UTC-7, Pascal Lamblin wrote:
> >
> > `salidas_capa3` is a theano function, which is a callable object. 
> > However, you are trying to _index_ into it using 
> > `salidas_capa3[test_model(i)]`. 
> > What is the behaviour you would expect from that code? 
> >
> > On Wed, Jul 27, 2016, Beatriz G. wrote: 
> > > Hi guays, 
> > > 
> > > I am having a similar problem, I am trying to compile the following 
> > theano 
> > > function: 
> > > 
> > > layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=4) 
> > > 
> > > 
> > > salidas_capa3 = theano.function( 
> > >     [index], 
> > >     layer3.y_pred, 
> > >     givens={ 
> > >         x: test_set_x[index * batch_size: (index + 1) * batch_size] 
> > >     } 
> > > ) 
> > > 
> > > 
> > > 
> > > Which I call in the test part: 
> > > 
> > > 
> > > for i in range(n_test_batches): 
> > >     test_losses = [test_model(i)] 
> > >     y_pred_test = salidas_capa3[test_model(i)] 
> > >     print y_pred_test 
> > >     test_score = numpy.mean(test_losses) 
> > > 
> > > 
> > > 
> > > And I am getting the next error: 
> > > 
> > > 
> > > Traceback (most recent call last): 
> > >   File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 416, in 
> > <module> 
> > >     evaluate_lenet5() 
> > >   File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 392, in 
> > evaluate_lenet5 
> > >     y_pred_test = salidas_capa3[test_model(i)] 
> > >   File 
> > "/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
> >  
> > line 545, in __getitem__ 
> > >     return self.value[item] 
> > >   File 
> > "/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
> >  
> > line 480, in __getitem__ 
> > >     s = finder[item] 
> > > TypeError: unhashable type: 'numpy.ndarray' 
> > > 
> > > 
> > > 
> > > 
> > > Anyone could guide me? 
> > > 
> > > 
> > > Here is my code: 
> > > 
> > > 
> > > class LeNetConvPoolLayer(object): 
> > >     """Pool Layer of a convolutional network """ 
> > > 
> > >     def __init__(self, rng, input, filter_shape, image_shape, 
> > poolsize=(2, 2)): 
> > >         """ 
> > >         Allocate a LeNetConvPoolLayer with shared variable internal 
> > parameters. 
> > >         :type rng: numpy.random.RandomState 
> > >         :param rng: a random number generator used to initialize weights 
> > >         :type input: theano.tensor.dtensor4 
> > >         :param input: symbolic image tensor, of shape image_shape 
> > >         :type filter_shape: tuple or list of length 4 
> > >         :param filter_shape: (number of filters, num input feature maps, 
> > >                               filter height, filter width) 
> > >         :type image_shape: tuple or list of length 4 
> > >         :param image_shape: (batch size, num input feature maps, 
> > >                              image height, image width) 
> > >         :type poolsize: tuple or list of length 2 
> > >         :param poolsize: the downsampling (pooling) factor (#rows, 
> > #cols) 
> > >         """ 
> > > 
> > >         assert image_shape[1] == filter_shape[1]                         
> >    #El numero de feature maps sea igual en ambas variables 
> > >         self.input = input 
> > > 
> > >         # there are "num input feature maps * filter height * filter 
> > width" 
> > >         # inputs to each hidden unit 
> > >         fan_in = numpy.prod(filter_shape[1:])                           
> >      #el numero de neuronas en la capa anterio 
> > >         # each unit in the lower layer receives a gradient from: 
> > >         # "num output feature maps * filter height * filter width" / 
> > >         #   pooling size 
> > > 
> > >         fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /     
> >      #El numero de neuronas de salida: numero de filtros*alto*ancho del 
> > filtro/poolsize(tam*tam) 
> > >                    numpy.prod(poolsize)) 
> > >         # initialize weights with random weights 
> > > 
> > >         # initialize weights with random weights 
> > >         W_bound = numpy.sqrt(6. / (fan_in + fan_out)) 
> > >         self.W = theano.shared( 
> > >             numpy.asarray( 
> > >                 rng.uniform(low=-W_bound, high=W_bound, 
> > size=filter_shape), 
> > >                 # Se calcula asi el W_bound por la funcion  de 
> > activacion tangencial. 
> > >                 # Los pesos dependen del tamanyo del filtro(neuronas) 
> > > 
> > >                 dtype=theano.config.floatX  # Para que sea valido en gpu 
> > >             ), 
> > >             borrow=True 
> > >         ) 
> > > 
> > >         # the bias is a 1D tensor -- one bias per output feature map 
> > >         b_values = numpy.zeros((filter_shape[0],), 
> > dtype=theano.config.floatX) 
> > >         self.b = theano.shared(value=b_values, borrow=True) 
> > > 
> > >         # convolve input feature maps with filters 
> > >         conv_out = conv.conv2d( 
> > >             input=input, 
> > >             filters=self.W, 
> > >             filter_shape=filter_shape, 
> > >             image_shape=image_shape 
> > >         ) 
> > > 
> > >         # downsample each feature map individually, using maxpooling 
> > >         pooled_out = downsample.max_pool_2d( 
> > >             input=conv_out, 
> > >             ds=poolsize, 
> > >             ignore_border=True 
> > >         ) 
> > > 
> > >         print pooled_out 
> > > 
> > >         # add the bias term. Since the bias is a vector (1D array), we 
> > first 
> > >         # reshape it to a tensor of shape (1, n_filters, 1, 1). Each 
> > bias will 
> > >         # thus be broadcasted across mini-batches and feature map 
> > >         # width & height 
> > >         self.output = theano.tensor.nnet.relu((pooled_out + 
> > self.b.dimshuffle('x', 0, 'x', 'x')) , alpha=0) 
> > > 
> > > 
> > >         # store parameters of this layer 
> > >         self.params = [self.W, self.b] 
> > > 
> > >         # keep track of model input 
> > >         self.input = input 
> > > 
> > >         self.conv_out=conv_out 
> > >         self.pooled_out=pooled_out 
> > > 
> > >         self.salidas_capa = [self.conv_out, self.pooled_out, 
> > self.output] 
> > > 
> > > 
> > > 
> > > def evaluate_lenet5(learning_rate=0.001, n_epochs=2, nkerns=[48, 96], 
> > batch_size=20): 
> > >     """ Demonstrates lenet on MNIST dataset 
> > > 
> > >     :type learning_rate: float 
> > >     :param learning_rate: learning rate used (factor for the stochastic 
> > >                           gradient) 
> > > 
> > >     :type n_epochs: int 
> > >     :param n_epochs: maximal number of epochs to run the optimizer 
> > > 
> > >     :type dataset: string 
> > >     :param dataset: path to the dataset used for training /testing 
> > (MNIST here) 
> > > 
> > >     :type nkerns: list of ints 
> > >     :param nkerns: number of kernels on each layer 
> > >     """ 
> > > 
> > >     rng = numpy.random.RandomState(2509) 
> > > 
> > >     train_set_x, test_set_x, train_set_y, test_set_y, valid_set_x, 
> > valid_set_y =  Load_casia_Data2() 
> > > 
> > >     train_set_x = theano.shared(numpy.array(train_set_x, 
> >  dtype='float64',)) 
> > >     test_set_x = theano.shared(numpy.array(test_set_x, dtype='float64')) 
> > >     train_set_y = theano.shared(numpy.array(train_set_y, 
> >  dtype='int32')) 
> > >     test_set_y = theano.shared(numpy.array(test_set_y, dtype='int32')) 
> > >     valid_set_x = theano.shared(numpy.array(valid_set_x, 
> > dtype='float64')) 
> > >     valid_set_y = theano.shared(numpy.array(valid_set_y, dtype='int32')) 
> > > 
> > >     print("n_batches:") 
> > > 
> > >     # compute number of minibatches for training, validation and testing 
> > >     n_train_batches = train_set_x.get_value(borrow=True).shape[0] 
> > >     n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] 
> > >     n_test_batches = test_set_x.get_value(borrow=True).shape[0] 
> > >     print("n_train_batches: %d" % n_train_batches) 
> > >     print("n_valid_batches: %d" % n_valid_batches) 
> > >     print("n_test_batches: %d" % n_test_batches) 
> > > 
> > >     n_train_batches /= batch_size 
> > >     n_valid_batches /= batch_size 
> > >     n_test_batches /= batch_size 
> > > 
> > >     # allocate symbolic variables for the data 
> > >     index = T.lscalar()  # index to a [mini]batch 
> > > 
> > >     # start-snippet-1 
> > >     x = T.matrix('x')   # the data is presented as rasterized images 
> > >     y = T.ivector('y')  # the labels are presented as 1D vector of 
> > >                         # [int] labels 
> > > 
> > >     ###################### 
> > >     # BUILD ACTUAL MODEL # 
> > >     ###################### 
> > >     print '... building the model' 
> > > 
> > >     # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) 
> > >     # to a 4D tensor, compatible with our LeNetConvPoolLayer 
> > >     # (28, 28) is the size of MNIST images. 
> > >     layer0_input = x.reshape((batch_size, 3, 104, 52)) 
> > > 
> > >     # Construct the first convolutional pooling layer: 
> > >     # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) 
> > >     # maxpooling reduces this further to (24/2, 24/2) = (12, 12) 
> > >     # 4D output tensor is thus of shape(batch_size, nkerns[0], 12, 12) 
> > >     layer0 = LeNetConvPoolLayer( 
> > >         rng, 
> > >         input=layer0_input, 
> > >         image_shape=(batch_size, 3, 104, 52), 
> > >         filter_shape=(nkerns[0], 3, 5, 5), 
> > >         poolsize=(2, 2) 
> > >     ) 
> > > 
> > >     salidas_capa0 = theano.function( 
> > >     [index], 
> > >     layer0.salidas_capa, 
> > >     givens={ 
> > >     x: test_set_x[index * batch_size: (index + 1) * batch_size], 
> > >     } 
> > >     ) 
> > > 
> > > 
> > >     # Construct the second convolutional pooling layer 
> > >     # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) 
> > >     # maxpooling reduces this further to (8/2, 8/2) = (4, 4) 
> > >     # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) 
> > >     layer1 = LeNetConvPoolLayer( 
> > >         rng, 
> > >         input=layer0.output, 
> > >         image_shape=(batch_size, nkerns[0], 50, 24), 
> > >         filter_shape=(nkerns[1], nkerns[0], 5, 5), 
> > >         poolsize=(2, 2) 
> > >     ) 
> > > 
> > >     salidas_capa1 = theano.function( 
> > >     [index], 
> > >     layer1.salidas_capa, 
> > >     givens={ 
> > >     x: test_set_x[index * batch_size: (index + 1) * batch_size], 
> > >     } 
> > >     ) 
> > > 
> > >     # the HiddenLayer being fully-connected, it operates on 2D matrices 
> > of 
> > >     # shape (batch_size, num_pixels) (i.e matrix of rasterized images). 
> > >     # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 
> > 4), 
> > >     # or (500, 50 * 4 * 4) = (500, 800) with the default values. 
> > >     layer2_input = layer1.output.flatten(2) 
> > > 
> > >     # construct a fully-connected sigmoidal layer 
> > >     layer2 = HiddenLayer( 
> > >         rng, 
> > >         input=layer2_input, 
> > >         n_in=nkerns[1] * 23 * 10, 
> > >         n_out=100, 
> > >         activation=T.nnet.relu 
> > >     ) 
> > > 
> > >     # classify the values of the fully-connected sigmoidal layer 
> > >     svm = SVC() 
> > > 
> > > 
> > >     layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=4) 
> > > 
> > > 
> > >     salidas_capa3 = theano.function( 
> > >         [index], 
> > >         layer3.y_pred, 
> > >         givens={ 
> > >             x: test_set_x[index * batch_size: (index + 1) * batch_size] 
> > >         } 
> > >     ) 
> > > 
> > >     # the cost we minimize during training is the NLL of the model 
> > >     cost = layer3.negative_log_likelihood(y) 
> > > 
> > >     # create a function to compute the mistakes that are made by the 
> > model 
> > >     test_model = theano.function( 
> > >         [index], 
> > >         layer3.errors(y), 
> > >         givens={ 
> > >             x: test_set_x[index * batch_size: (index + 1) * batch_size], 
> >      #Los given son algo para la gpu 
> > >             y: test_set_y[index * batch_size: (index + 1) * batch_size] 
> > >         } 
> > >     ) 
> > > 
> > > 
> > >     validate_model = theano.function( 
> > >         [index], 
> > >         layer3.errors(y), 
> > >         givens={ 
> > >             x: valid_set_x[index * batch_size: (index + 1) * 
> > batch_size], 
> > >             y: valid_set_y[index * batch_size: (index + 1) * batch_size] 
> > >         } 
> > >     ) 
> > > 
> > >     # create a list of all model parameters to be fit by gradient 
> > descent 
> > >     params = layer3.params + layer2.params + layer1.params + 
> > layer0.params 
> > > 
> > >     # create a list of gradients for all model parameters 
> > >     grads = T.grad(cost, params) 
> > > 
> > >     # train_model is a function that updates the model parameters by 
> > >     # SGD Since this model has many parameters, it would be tedious to 
> > >     # manually create an update rule for each model parameter. We thus 
> > >     # create the updates list by automatically looping over all 
> > >     # (params[i], grads[i]) pairs. 
> > >     updates = [ 
> > >         (param_i, param_i - learning_rate * grad_i) 
> > >         for param_i, grad_i in zip(params, grads) 
> > >     ] 
> > > 
> > >     train_model = theano.function( 
> > >         [index], 
> > >         cost, 
> > >         updates=updates, 
> > >         givens={ 
> > >             x: train_set_x[index * batch_size: (index + 1) * 
> > batch_size], 
> > >             y: train_set_y[index * batch_size: (index + 1) * batch_size] 
> > >         } 
> > >     ) 
> > >     # end-snippet-1 
> > > 
> > > 
> > >     ############### 
> > >     # TRAIN MODEL # 
> > >     ############### 
> > >     print '... training' 
> > >     # early-stopping parameters 
> > >     patience = 10000  # look as this many examples regardless 
> > >     patience_increase = 2  # wait this much longer when a new best is 
> > found 
> > >     improvement_threshold = 0.995  # a relative improvement of this much 
> > is 
> > >     # considered significant 
> > >     validation_frequency = min(n_train_batches, patience / 2) 
> > >     # go through this many minibatche before checking the network 
> > >     # on the validation set; in this case we check every epoch 
> > > 
> > >     best_validation_loss = numpy.inf 
> > >     best_iter = 0 
> > >     test_score = 0. 
> > >     start_time = timeit.default_timer() 
> > > 
> > >     lista_coste = [] 
> > > 
> > >     epoch = 0 
> > >     done_looping = False 
> > > 
> > >     # save_file = 
> > open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas0.pkl', 'wb') 
> > >     # save_file1 = 
> > open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb0.pkl', 'wb') 
> > >     # save_file2 = 
> > open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas1.pkl', 'wb') 
> > >     # save_file3 = 
> > open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb1.pkl', 'wb') 
> > > 
> > >     print 'n_train_batches' 
> > >     print n_train_batches 
> > >     while (epoch < n_epochs) and (not done_looping): 
> > >         epoch = epoch + 1 
> > >         for minibatch_index in range(n_train_batches): 
> > > 
> > >             iter = (epoch - 1) * n_train_batches + minibatch_index 
> > > 
> > >             if iter % 100 == 0: 
> > >                 print('training @ iter = ', iter) 
> > >             cost_ij = train_model(minibatch_index) 
> > > 
> > >             if (iter + 1) % validation_frequency == 0: 
> > > 
> > >                 # compute zero-one loss on validation set 
> > > 
> > >                 validation_losses = [validate_model(i) for i 
> > >                                      in range(n_valid_batches)] 
> > >                 this_validation_loss = numpy.mean(validation_losses) 
> > >                 print('epoch %i, minibatch %i/%i, validation error %f 
> > %%' % 
> > >                       (epoch, minibatch_index + 1, n_train_batches, 
> > >                        this_validation_loss * 100.)) 
> > > 
> > >                 # if we got the best validation score until now 
> > >                 if this_validation_loss < best_validation_loss: 
> > > 
> > >                     # improve patience if loss improvement is good 
> > enough 
> > >                     if this_validation_loss < best_validation_loss * \ 
> > >                             improvement_threshold: 
> > >                         patience = max(patience, iter * 
> > patience_increase) 
> > > 
> > >                     # save best validation score and iteration number 
> > >                     best_validation_loss = this_validation_loss 
> > >                     best_iter = iter 
> > > 
> > >                     w0_test = layer0.W.get_value() 
> > >                     b0_test = layer0.b.get_value() 
> > > 
> > >                     w1_test = layer1.W.get_value() 
> > >                     b1_test = layer1.b.get_value() 
> > > 
> > >                     w2_test = layer2.W.get_value() 
> > >                     b2_test = layer2.b.get_value() 
> > > 
> > > 
> > > 
> > > 
> > >             if patience <= iter: 
> > >                 done_looping = True 
> > >                 break 
> > > 
> > > 
> > >     ############################### 
> > >     ###    TESTING MODEL        ### 
> > >     ############################### 
> > >     #Aqui se tiene que cargar la red 
> > > 
> > >     layer0.W.set_value(w0_test) 
> > >     layer0.b.set_value(b0_test) 
> > > 
> > >     layer1.W.set_value(w1_test) 
> > >     layer1.b.set_value(b1_test) 
> > > 
> > >     layer2.W.set_value(w2_test) 
> > >     layer2.b.set_value(b2_test) 
> > > 
> > >     # test it on the test set 
> > >     for i in range(n_test_batches): 
> > >         test_losses = [test_model(i)] 
> > >         y_pred_test = salidas_capa3[test_model(i)] 
> > >         print y_pred_test 
> > >         test_score = numpy.mean(test_losses) 
> > > 
> > >     print((' test error of best model %f %%') % (test_score * 100.)) 
> > > 
> > > 
> > >     end_time = timeit.default_timer() 
> > >     print('Optimization complete.') 
> > >     print('Best validation score of %f %% obtained at iteration %i, ' 
> > >           'with test performance %f %%' % 
> > >           (best_validation_loss * 100., best_iter + 1, test_score * 
> > 100.)) 
> > > 
> > >     print("start time: %d" % start_time) 
> > >     print("end_time: %d" % end_time) 
> > > 
> > >     # print(('The code for file ' + 
> > >     #        os.path.split(__file__)[1] + 
> > >     #        ' ran for %.2fm' % ((end_time - start_time) / 60.)), 
> > file=sys.stderr) 
> > > 
> > > 
> > > 
> > > 
> > > if __name__ == '__main__': 
> > >     evaluate_lenet5() 
> > > 
> > > 
> > > def experiment(state, channel): 
> > >     evaluate_lenet5(state.learning_rate, dataset=state.dataset) 
> > > 
> > > 
> > > 
> > > 
> > > 
> > > 
> > > Thanks in advance. 
> > > 
> > > 
> > > Regards. 
> > > 
> > > 
> > > 
> > > 
> > > 
> > > 
> > > 
> > > El martes, 28 de mayo de 2013, 23:56:29 (UTC+2), Pascal Lamblin 
> > escribió: 
> > > > 
> > > > On Wed, May 29, 2013, Анатолий wrote: 
> > > > > That's how i define test values: 
> > > > > 
> > > > > ishape = (288, 384) 
> > > > > batch_size = numpy.int16(batch_size) 
> > > > > index = T.lscalar().tag.test_value = numpy.int16(0) 
> > > > >  x = T.matrix('x').tag.test_value = numpy.random.rand(batch_size, 
> > > > > numpy.prod(ishape)).astype(dtype=theano.config.floatX) 
> > > > >  y = T.ivector('y').tag.test_value = numpy.random.randint(0,2, 
> > > > > size=batch_size).astype(dtype=numpy.int16) 
> > > > 
> > > > In fact, as Olivier Delalleau pointed it, here is your problem. Here, 
> > > > you assign the test value to the name 'x', rather than assigning the 
> > > > symbolic variable. You should do the following instead: 
> > > > 
> > > > # In two different statements: 
> > > > # first create 'index' as a symbolic variable 
> > > > index = T.lscalar() 
> > > > # then assign a test value to it 
> > > > index.tag.test_value = numpy.int16(0) 
> > > > 
> > > > # same thing for the other variables: 
> > > > x = T.matrix('x') 
> > > > x.tag.test_value = numpy.random.rand(batch_size, 
> > > > numpy.prod(ishape)).astype(dtype=theano.config.floatX) 
> > > > 
> > > > y = T.ivector('y') 
> > > > y.tag.test_value = numpy.random.randint(0, 2, 
> > > > size=batch_size).astype(dtype=numpy.int16) 
> > > > 
> > > > Hope this helps, 
> > > > -- 
> > > > Pascal 
> > > > 
> > > 
> > > -- 
> > > 
> > > --- 
> > > You received this message because you are subscribed to the Google 
> > Groups "theano-users" group. 
> > > To unsubscribe from this group and stop receiving emails from it, send 
> > an email to [email protected] <javascript:>. 
> > > For more options, visit https://groups.google.com/d/optout. 
> >
> >
> > -- 
> > Pascal 
> >
> 
> -- 
> 
> --- 
> You received this message because you are subscribed to the Google Groups 
> "theano-users" group.
> To unsubscribe from this group and stop receiving emails from it, send an 
> email to [email protected].
> For more options, visit https://groups.google.com/d/optout.


-- 
Pascal

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to