I just updated to gpuarray backend, and suddenly I started seeing float64 
warnings. I printed the graph (float64 shown in bold red below), then set 
it up so that float64 triggers pdb. However, I still can't figure out which 
variable it is. By using UP in pdb I eventually got to my training function:


C:\ProgramData\Miniconda2\lib\site-packages\theano\gof\type.py:405: 
UserWarning: You are creating a TensorVariable with float64 dtype. You 
requested an action via the Theano flag 
warn_float64={ignore,warn,raise,pdb}. 

return utils.add_tag_trace(self.make_variable(name))


C:\ProgramData\Miniconda2\lib\site-packages\theano\gof\graph.py:447: 
UserWarning: You are creating a TensorVariable with float64 dtype. You 
requested an action via the Theano flag 
warn_float64={ignore,warn,raise,pdb}.

cp = self.__class__(self.type, None, None, self.name)


HostFromGpu(gpuarray) [id A] <TensorType(float32, scalar)> 'mean' 84

|GpuElemwise{Composite{(i0 / Cast{float32}((Composite{Switch(LT(i0, i1), 
i2, i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), 
i2, i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4, i5), 
i6, i7), i8, i9), i10, i11) - Switch(LT(Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i12, i13, i14, i15, i16), 
i17, i18), i19, i20), i21, i22), Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4, i5), i6, 
i7), i8, i9), i10, i11)), Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i12, i13, i14, i15, i16), 
i17, i18), i19, i20), i21, i22), Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), i2, 
i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4, i5), i6, 
i7), i8, i9), i10, i11)))))}}[(0, 0)]<gpuarray> [id B] 
<GpuArrayType<None>(float32, ())> '' 83

|GpuCAReduceCuda{add} [id C] <GpuArrayType<None>(float32, ())> '' 82

| |GpuElemwise{Composite{EQ(Cast{int32}(i0), i1)}}[]<gpuarray> [id D] 
<GpuArrayType<None>(bool, (False,))> '' 81

| |GpuSubtensor{int64:int64:} [id E] <GpuArrayType<None>(float32, 
(False,))> '' 27

| | |<GpuArrayType<None>(float32, (False,))> [id F] 
<GpuArrayType<None>(float32, (False,))>

| | |ScalarFromTensor [id G] <int64> '' 13

| | | |Elemwise{mul,no_inplace} [id H] <TensorType(int64, scalar)> '' 1

| | | |TensorConstant{128} [id I] <TensorType(int64, scalar)>

| | | |<TensorType(int64, scalar)> [id J] <TensorType(int64, scalar)>

| | |ScalarFromTensor [id K] <int64> '' 15

| | |Elemwise{Composite{(i0 * (i1 + i2))}} [id L] <TensorType(int64, 
scalar)> '' 2

| | |TensorConstant{128} [id I] <TensorType(int64, scalar)>

| | |TensorConstant{1} [id M] <TensorType(int64, scalar)>

| | |<TensorType(int64, scalar)> [id J] <TensorType(int64, scalar)>

| |GpuFromHost<None> [id N] <GpuArrayType<None>(int64, (False,))> '' 80

| |Argmax [id O] <TensorType(int64, vector)> 'argmax' 79

| |HostFromGpu(gpuarray) [id P] <TensorType(float32, matrix)> '' 78

| | |GpuElemwise{Add}[(0, 0)]<gpuarray> [id Q] <GpuArrayType<None>(float32, 
(False, False))> '' 77

| | |GpuGemm{inplace=True} [id R] <GpuArrayType<None>(float32, (False, 
False))> '' 76

| | | |GpuAllocEmpty{dtype='float32', context_name=None} [id S] 
<GpuArrayType<None>(float32, (False, False))> '' 75

| | | | |Subtensor{int64} [id T] <TensorType(int64, scalar)> '' 74

| | | | | |Shape [id U] <TensorType(int64, vector)> '' 73

| | | | | | |GpuReshape{2} [id V] <GpuArrayType<None>(float32, (False, 
False))> '' 72

| | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 + i3)) + (i4 * Abs((i2 
+ i3)))))}}[(0, 2)]<gpuarray> [id W] <GpuArrayType<None>(float32, (False, 
False))> '' 71

| | | | | | | |GpuArrayConstant{[[ 0.5]]} [id X] 
<GpuArrayType<None>(float32, (True, True))>

| | | | | | | |GpuArrayConstant{[[ 0.1]]} [id Y] 
<GpuArrayType<None>(float32, (True, True))>

| | | | | | | |GpuGemm{inplace=True} [id Z] <GpuArrayType<None>(float32, 
(False, False))> '' 70

| | | | | | | | |GpuAllocEmpty{dtype='float32', context_name=None} [id BA] 
<GpuArrayType<None>(float32, (False, False))> '' 69

| | | | | | | | | |Subtensor{int64} [id BB] <TensorType(int64, scalar)> '' 
68

| | | | | | | | | | |Shape [id BC] <TensorType(int64, vector)> '' 67

| | | | | | | | | | | |GpuReshape{2} [id BD] <GpuArrayType<None>(float32, 
(False, False))> '' 66

| | | | | | | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 + i3)) + (i4 
* Abs((i2 + i3)))))}}[(0, 2)]<gpuarray> [id BE] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 65

| | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.5]]]]} [id BF] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.095]]]]} [id BG] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | | |GpuDnnConv{algo='time_on_shape_change', 
inplace=True} [id BH] <GpuArrayType<None>(float32, (False, False, False, 
False))> '' 64

| | | | | | | | | | | | | |GpuContiguous [id BI] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 51

| | | | | | | | | | | | | | |GpuReshape{4} [id BJ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 50

| | | | | | | | | | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 + i3)) 
+ (i4 * Abs((i2 + i3)))))}}[(0, 2)]<gpuarray> [id BK] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 49

| | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.5]]]]} [id BF] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.1]]]]} [id BL] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | | | | | |GpuDnnConv{algo='time_on_shape_change', 
inplace=True} [id BM] <GpuArrayType<None>(float32, (False, False, False, 
False))> '' 48

| | | | | | | | | | | | | | | | |GpuContiguous [id BN] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 35

| | | | | | | | | | | | | | | | | |GpuReshape{4} [id BO] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 32

| | | | | | | | | | | | | | | | | |GpuSubtensor{int64:int64:} [id BP] 
<GpuArrayType<None>(float32, (False, False))> '' 26

| | | | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False, 
False))> [id BQ] <GpuArrayType<None>(float32, (False, False))>

| | | | | | | | | | | | | | | | | | |ScalarFromTensor [id G] <int64> '' 13

| | | | | | | | | | | | | | | | | | |ScalarFromTensor [id K] <int64> '' 15

| | | | | | | | | | | | | | | | | |TensorConstant{[128 3 32 32]} [id BR] 
<TensorType(int32, vector)>

| | | | | | | | | | | | | | | | |GpuContiguous [id BS] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 10

| | | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False, 
False, False, False))> [id BT] <GpuArrayType<None>(float32, (False, False, 
False, False))>

| | | | | | | | | | | | | | | | |GpuAllocEmpty{dtype='float32', 
context_name=None} [id BU] <GpuArrayType<None>(float32, (False, False, 
False, False))> '' 47

| | | | | | | | | | | | | | | | | |Assert{msg='The convolution would 
produce an invalid shape (dim[0] < 0).'} [id BV] <TensorType(int64, 
scalar)> '' 44

| | | | | | | | | | | | | | | | | | |Shape_i{0} [id BW] <TensorType(int64, 
scalar)> '' 38

| | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 35

| | | | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id BX] 
<TensorType(bool, scalar)> '' 41

| | | | | | | | | | | | | | | | | | |Shape_i{0} [id BW] <TensorType(int64, 
scalar)> '' 38

| | | | | | | | | | | | | | | | | | |TensorConstant{0} [id BY] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | |Assert{msg='The convolution would 
produce an invalid shape (dim[1] < 0).'} [id BZ] <TensorType(int64, 
scalar)> '' 34

| | | | | | | | | | | | | | | | | | |Shape_i{0} [id CA] <TensorType(int64, 
scalar)> '' 25

| | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 10

| | | | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id CB] 
<TensorType(bool, scalar)> '' 31

| | | | | | | | | | | | | | | | | | |Shape_i{0} [id CA] <TensorType(int64, 
scalar)> '' 25

| | | | | | | | | | | | | | | | | | |TensorConstant{0} [id CC] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | |Assert{msg='The convolution would 
produce an invalid shape (dim[2] <= 0).'} [id CD] <TensorType(int64, 
scalar)> '' 46

| | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) 
* i3) + i4)) // i5) + i6)}}[(0, 0)] [id CE] <TensorType(int64, scalar)> '' 
40

| | | | | | | | | | | | | | | | | | | |Shape_i{2} [id CF] 
<TensorType(int64, scalar)> '' 37

| | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 35

| | | | | | | | | | | | | | | | | | | |Shape_i{2} [id CG] 
<TensorType(int64, scalar)> '' 24

| | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 10

| | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CI] 
<TensorType(int32, scalar)>

| | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id CK] 
<TensorType(bool, scalar)> '' 43

| | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) 
* i3) + i4)) // i5) + i6)}}[(0, 0)] [id CE] <TensorType(int64, scalar)> '' 
40

| | | | | | | | | | | | | | | | | | |TensorConstant{0} [id CL] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | |Assert{msg='The convolution would 
produce an invalid shape (dim[3] <= 0).'} [id CM] <TensorType(int64, 
scalar)> '' 45

| | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * 
i3) + i4)) // i5) + i6)}}[(0, 0)] [id CN] <TensorType(int64, scalar)> '' 39

| | | | | | | | | | | | | | | | | | |Shape_i{3} [id CO] <TensorType(int64, 
scalar)> '' 36

| | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 35

| | | | | | | | | | | | | | | | | | |Shape_i{3} [id CP] <TensorType(int64, 
scalar)> '' 23

| | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 10

| | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CI] 
<TensorType(int32, scalar)>

| | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id CQ] 
<TensorType(bool, scalar)> '' 42

| | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * 
i3) + i4)) // i5) + i6)}}[(0, 0)] [id CN] <TensorType(int64, scalar)> '' 39

| | | | | | | | | | | | | | | | | |TensorConstant{0} [id CR] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | |GpuDnnConvDesc{border_mode='valid', 
subsample=(2, 2), conv_mode='conv', precision='float32'} [id CS] 
<CDataType{cudnnConvolutionDescriptor_t}> '' 30

| | | | | | | | | | | | | | | | | |Shape [id CT] <TensorType(int64, 
vector)> '' 22

| | | | | | | | | | | | | | | | | |GpuContiguous [id BS] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 10

| | | | | | | | | | | | | | | | |Constant{1.0} [id CU] <float32>

| | | | | | | | | | | | | | | | |Constant{0.0} [id CV] <float32>

| | | | | | | | | | | | | | | |InplaceGpuDimShuffle{x,0,x,x} [id CW] 
<GpuArrayType<None>(float32, (True, False, True, True))> '' 9

| | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False,))> 
[id CX] <GpuArrayType<None>(float32, (False,))>

| | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.1]]]]} [id BL] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | | | | |TensorConstant{[128 64 14 14]} [id CY] 
<TensorType(int32, vector)>

| | | | | | | | | | | | | |GpuContiguous [id CZ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 8

| | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False, False, 
False, False))> [id DA] <GpuArrayType<None>(float32, (False, False, False, 
False))>

| | | | | | | | | | | | | |GpuAllocEmpty{dtype='float32', 
context_name=None} [id DB] <GpuArrayType<None>(float32, (False, False, 
False, False))> '' 63

| | | | | | | | | | | | | | |Assert{msg='The convolution would produce an 
invalid shape (dim[0] < 0).'} [id DC] <TensorType(int64, scalar)> '' 60

| | | | | | | | | | | | | | | |Shape_i{0} [id DD] <TensorType(int64, 
scalar)> '' 54

| | | | | | | | | | | | | | | | |GpuContiguous [id BI] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 51

| | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id DE] 
<TensorType(bool, scalar)> '' 57

| | | | | | | | | | | | | | | |Shape_i{0} [id DD] <TensorType(int64, 
scalar)> '' 54

| | | | | | | | | | | | | | | |TensorConstant{0} [id DF] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | |Assert{msg='The convolution would produce an 
invalid shape (dim[1] < 0).'} [id DG] <TensorType(int64, scalar)> '' 33

| | | | | | | | | | | | | | | |Shape_i{0} [id DH] <TensorType(int64, 
scalar)> '' 21

| | | | | | | | | | | | | | | | |GpuContiguous [id CZ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 8

| | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id DI] 
<TensorType(bool, scalar)> '' 29

| | | | | | | | | | | | | | | |Shape_i{0} [id DH] <TensorType(int64, 
scalar)> '' 21

| | | | | | | | | | | | | | | |TensorConstant{0} [id DJ] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | |Assert{msg='The convolution would produce an 
invalid shape (dim[2] <= 0).'} [id DK] <TensorType(int64, scalar)> '' 62

| | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * i3) 
+ i4)) // i5) + i6)}}[(0, 0)] [id DL] <TensorType(int64, scalar)> '' 56

| | | | | | | | | | | | | | | | |Shape_i{2} [id DM] <TensorType(int64, 
scalar)> '' 53

| | | | | | | | | | | | | | | | | |GpuContiguous [id BI] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 51

| | | | | | | | | | | | | | | | |Shape_i{2} [id DN] <TensorType(int64, 
scalar)> '' 20

| | | | | | | | | | | | | | | | | |GpuContiguous [id CZ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 8

| | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | |TensorConstant{1} [id CI] 
<TensorType(int32, scalar)>

| | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | | |TensorConstant{1} [id CH] 
<TensorType(int8, scalar)>

| | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id DO] 
<TensorType(bool, scalar)> '' 59

| | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * i3) 
+ i4)) // i5) + i6)}}[(0, 0)] [id DL] <TensorType(int64, scalar)> '' 56

| | | | | | | | | | | | | | | |TensorConstant{0} [id DP] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | |Assert{msg='The convolution would produce an 
invalid shape (dim[3] <= 0).'} [id DQ] <TensorType(int64, scalar)> '' 61

| | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * i3) + 
i4)) // i5) + i6)}}[(0, 0)] [id DR] <TensorType(int64, scalar)> '' 55

| | | | | | | | | | | | | | | |Shape_i{3} [id DS] <TensorType(int64, 
scalar)> '' 52

| | | | | | | | | | | | | | | | |GpuContiguous [id BI] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 51

| | | | | | | | | | | | | | | |Shape_i{3} [id DT] <TensorType(int64, 
scalar)> '' 19

| | | | | | | | | | | | | | | | |GpuContiguous [id CZ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 8

| | | | | | | | | | | | | | | |TensorConstant{1} [id CH] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | | |TensorConstant{1} [id CI] <TensorType(int32, 
scalar)>

| | | | | | | | | | | | | | | |TensorConstant{1} [id CH] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | | |TensorConstant{2} [id CJ] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | | |TensorConstant{1} [id CH] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id DU] 
<TensorType(bool, scalar)> '' 58

| | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) * i3) + 
i4)) // i5) + i6)}}[(0, 0)] [id DR] <TensorType(int64, scalar)> '' 55

| | | | | | | | | | | | | | |TensorConstant{0} [id DV] <TensorType(int8, 
scalar)>

| | | | | | | | | | | | | |GpuDnnConvDesc{border_mode='valid', 
subsample=(2, 2), conv_mode='conv', precision='float32'} [id DW] 
<CDataType{cudnnConvolutionDescriptor_t}> '' 28

| | | | | | | | | | | | | | |Shape [id DX] <TensorType(int64, vector)> '' 18

| | | | | | | | | | | | | | |GpuContiguous [id CZ] 
<GpuArrayType<None>(float32, (False, False, False, False))> '' 8

| | | | | | | | | | | | | |Constant{1.0} [id CU] <float32>

| | | | | | | | | | | | | |Constant{0.0} [id CV] <float32>

| | | | | | | | | | | | |InplaceGpuDimShuffle{x,0,x,x} [id DY] 
<GpuArrayType<None>(float32, (True, False, True, True))> '' 7

| | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False,))> [id DZ] 
<GpuArrayType<None>(float32, (False,))>

| | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.095]]]]} [id BG] 
<GpuArrayType<None>(float32, (True, True, True, True))>

| | | | | | | | | | | |TensorConstant{[ 128 3200]} [id EA] 
<TensorType(int32, vector)>

| | | | | | | | | | |Constant{0} [id EB] <int64>

| | | | | | | | | |Subtensor{int64} [id EC] <TensorType(int64, scalar)> '' 
17

| | | | | | | | | |Shape [id ED] <TensorType(int64, vector)> '' 6

| | | | | | | | | | |w [id EE] <GpuArrayType<None>(float32, (False, False))>

| | | | | | | | | |Constant{1} [id EF] <int64>

*| | | | | | | | |TensorConstant{0.25} [id EG] <TensorType(float64, 
scalar)>*

| | | | | | | | |GpuReshape{2} [id BD] <GpuArrayType<None>(float32, (False, 
False))> '' 66

| | | | | | | | |w [id EE] <GpuArrayType<None>(float32, (False, False))>

*| | | | | | | | |TensorConstant{0.0} [id EH] <TensorType(float64, scalar)>*

| | | | | | | |InplaceGpuDimShuffle{x,0} [id EI] 
<GpuArrayType<None>(float32, (True, False))> '' 5

| | | | | | | | |b [id EJ] <GpuArrayType<None>(float32, (False,))>

| | | | | | | |GpuArrayConstant{[[ 0.1]]} [id Y] 
<GpuArrayType<None>(float32, (True, True))>

| | | | | | |TensorConstant{[128 390]} [id EK] <TensorType(int32, vector)>

| | | | | |Constant{0} [id EB] <int64>

| | | | |Subtensor{int64} [id EL] <TensorType(int64, scalar)> '' 16

| | | | |Shape [id EM] <TensorType(int64, vector)> '' 4

| | | | | |w [id EN] <GpuArrayType<None>(float32, (False, False))>

| | | | |Constant{1} [id EF] <int64>

*| | | |TensorConstant{0.25} [id EG] <TensorType(float64, scalar)>*

| | | |GpuReshape{2} [id V] <GpuArrayType<None>(float32, (False, False))> 
'' 72

| | | |w [id EN] <GpuArrayType<None>(float32, (False, False))>

| | | |TensorConstant{0.0} [id EH] <TensorType(float64, scalar)>

| | |InplaceGpuDimShuffle{x,0} [id EO] <GpuArrayType<None>(float32, (True, 
False))> '' 3

| | |b [id EP] <GpuArrayType<None>(float32, (False,))>

| |TensorConstant{(1L,) of 1} [id EQ] <TensorType(int32, (True,))>

|GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14

| |Elemwise{Composite{(i0 * (i1 + i2))}} [id L] <TensorType(int64, scalar)> 
'' 2

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

| |Shape_i{0} [id EU] <TensorType(int64, scalar)> '' 0

| |<GpuArrayType<None>(float32, (False,))> [id F] 
<GpuArrayType<None>(float32, (False,))>

|GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuArrayConstant{-1} [id EV] <GpuArrayType<None>(int8, ())>

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12

| |Elemwise{mul,no_inplace} [id H] <TensorType(int64, scalar)> '' 1

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

|GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

|GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>

|GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>





--Return--

None

> c:\programdata\miniconda2\lib\site-packages\theano\tensor\var.py(824)
__init__()

822 elif config.warn_float64 == 'pdb':

823 import pdb

--> 824 pdb.set_trace()

825 TensorType.Variable = TensorVariable

826 



ipdb> 


ipdb> p variable_name

*** NameError: NameError("name 'variable_name' is not defined",)


ipdb> p dir

<built-in function dir>


ipdb> l

819 warnings.warn(msg, stacklevel=1 + nb_rm)

820 elif config.warn_float64 == "raise":

821 raise Exception(msg)

822 elif config.warn_float64 == 'pdb':

823 import pdb

--> 824 pdb.set_trace()

825 TensorType.Variable = TensorVariable

826 

827 

828 class TensorConstantSignature(tuple):

829 """



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\tensor\type.py(353)
make_variable()

351 

352 """

--> 353 return self.Variable(self, name=name)

354 

355 def __str__(self):



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\type.py(405)
__call__()

403 

404 """

--> 405 return utils.add_tag_trace(self.make_variable(name))

406 

407 def values_eq(self, a, b):



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gpuarray\basic_ops.py
(564)make_node()

562 return Apply(self, [x],

563 [tensor.TensorType(dtype=x.dtype,

--> 564 broadcastable=x.broadcastable)()])

565 

566 def perform(self, node, inp, out):



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\op.py(615)__call__
()

613 """

614 return_list = kwargs.pop('return_list', False)

--> 615 node = self.make_node(*inputs, **kwargs)

616 

617 if config.compute_test_value != 'off':



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gpuarray\opt.py(175)
safe_to_cpu()

173 def safe_to_cpu(x):

174 if isinstance(x.type, GpuArrayType):

--> 175 return host_from_gpu(x)

176 else:

177 return x



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gpuarray\opt.py(235)
local_opt()

233 if isinstance(new_op, theano.Op):

234 return [safe_to_cpu(o) for o in

--> 235 new_op(*node.inputs, return_list=True)]

236 elif isinstance(new_op, (tuple, list)):

237 return [safe_to_cpu(o) for o in new_op]



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(1982)
process_node()

1980 lopt = lopt or self.local_opt

1981 try:

-> 1982 replacements = lopt.transform(node)

1983 except Exception as e:

1984 if self.failure_callback is not None:



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(2470)apply()

2468 nb = change_tracker.nb_imported

2469 t_opt = time.time()

-> 2470 lopt_change = self.process_node(fgraph, node, lopt)

2471 time_opts[lopt] += time.time() - t_opt

2472 if not lopt_change:



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(87)optimize
()

85 orig = theano.tensor.basic.constant.enable

86 theano.tensor.basic.constant.enable = False

---> 87 ret = self.apply(fgraph, *args, **kwargs)

88 finally:

89 theano.tensor.basic.constant.enable = orig



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(235)apply()

233 nb_nodes_before = len(fgraph.apply_nodes)

234 t0 = time.time()

--> 235 sub_prof = optimizer.optimize(fgraph)

236 l.append(float(time.time() - t0))

237 sub_profs.append(sub_prof)



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(87)optimize
()

85 orig = theano.tensor.basic.constant.enable

86 theano.tensor.basic.constant.enable = False

---> 87 ret = self.apply(fgraph, *args, **kwargs)

88 finally:

89 theano.tensor.basic.constant.enable = orig



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(235)apply()

233 nb_nodes_before = len(fgraph.apply_nodes)

234 t0 = time.time()

--> 235 sub_prof = optimizer.optimize(fgraph)

236 l.append(float(time.time() - t0))

237 sub_profs.append(sub_prof)



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(87)optimize
()

85 orig = theano.tensor.basic.constant.enable

86 theano.tensor.basic.constant.enable = False

---> 87 ret = self.apply(fgraph, *args, **kwargs)

88 finally:

89 theano.tensor.basic.constant.enable = orig



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\gof\opt.py(98)__call__
()

96 

97 """

---> 98 return self.optimize(fgraph)

99 

100 def add_requirements(self, fgraph):



ipdb> up

> 
c:\programdata\miniconda2\lib\site-packages\theano\compile\function_module.py
(1474)__init__()

1472 optimizer, inputs, outputs)

1473 else:

-> 1474 optimizer_profile = optimizer(fgraph)

1475 

1476 end_optimizer = time.time()



ipdb> up

> 
c:\programdata\miniconda2\lib\site-packages\theano\compile\function_module.py
(1794)orig_function()

1792 profile=profile,

1793 on_unused_input=on_unused_input,

-> 1794 output_keys=output_keys).create(

1795 defaults)

1796 



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\compile\pfunc.py(486)
pfunc()

484 accept_inplace=accept_inplace, name=name,

485 profile=profile, on_unused_input=on_unused_input,

--> 486 output_keys=output_keys)

487 

488 



ipdb> up

> c:\programdata\miniconda2\lib\site-packages\theano\compile\function.py
(326)function()

324 on_unused_input=on_unused_input,

325 profile=profile,

--> 326 output_keys=output_keys)

327 # We need to add the flag check_aliased inputs if we have any mutable or

328 # borrowed used defined inputs



ipdb> up

> c:\users\michael\desktop\research\code\strided_fitnet.py(139)SGD()

137 givens={

138 self.x: training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

--> 139 self.y: training_y[i*self.mini_batch_size: (i+1)*self.
mini_batch_size]

140 })

141 



ipdb> 



How do I find it?








-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to