We compile with it. We don't use all its new features.

Fred

On Thu, Apr 27, 2017 at 6:10 PM Michael Klachko <[email protected]>
wrote:

> Great, that worked, and the error about float64 is gone. Thank you. By the
> way, is CuDNN v6 supported in this dev build?
>
> On Thu, Apr 27, 2017 at 2:46 PM, Frédéric Bastien <
> [email protected]> wrote:
>
>> pip install --no-deps -U git+
>> https://github.com/Theano/Theano.git#egg=Theano
>>
>> I added "-U"
>>
>> On Thu, Apr 27, 2017 at 5:45 PM Michael Klachko <[email protected]>
>> wrote:
>>
>>> It does not want to update:
>>>
>>> C:\Users\Michael\>pip install --no-deps git+
>>> https://github.com/Theano/Theano.git#egg=Theano
>>> Requirement already satisfied: Theano from git+
>>> https://github.com/Theano/Theano.git#egg=Theano in
>>> c:\programdata\miniconda2\lib\site-packages
>>>
>>> On Tue, Apr 11, 2017 at 2:12 PM, Frédéric Bastien <
>>> [email protected]> wrote:
>>>
>>>>
>>>> http://deeplearning.net/software/theano/install_ubuntu.html#bleeding-edge-installation-recommended
>>>>
>>>>
>>>> pip install --user --no-deps 
>>>> git+https://github.com/Theano/Theano.git#egg=Theano
>>>>
>>>>
>>>>
>>>> On Tue, Apr 11, 2017 at 12:22 PM Michael Klachko <
>>>> [email protected]> wrote:
>>>>
>>>>> Thanks! Currently I use the release version of Theano 0.9, installed
>>>>> with conda. What's the best way to switch to dev version? Should I just
>>>>> overwrite the
>>>>> C:\ProgramData\Miniconda2\pkgs\theano-0.9.0-py27_0\Lib\site-packages\theano
>>>>> folder?
>>>>>
>>>>> On Tue, Apr 11, 2017 at 8:02 AM, Frédéric Bastien <
>>>>> [email protected]> wrote:
>>>>>
>>>>> Just an updated, we fixed many such useless warning. Update Theano to
>>>>> the dev version. If you still see them, tell us.
>>>>>
>>>>> Fred
>>>>>
>>>>> On Sat, Mar 25, 2017 at 4:22 AM Michael Klachko <
>>>>> [email protected]> wrote:
>>>>>
>>>>> Oh, looks like my message got truncated. Here's the complete graph:
>>>>>
>>>>>
>>>>> C:\ProgramData\Miniconda2\lib\site-packages\theano\gof\type.py:405:
>>>>> UserWarning: You are creating a TensorVariable with float64 dtype. You
>>>>> requested an action via the Theano flag
>>>>> warn_float64={ignore,warn,raise,pdb}.
>>>>>
>>>>> return utils.add_tag_trace(self.make_variable(name))
>>>>>
>>>>> C:\ProgramData\Miniconda2\lib\site-packages\theano\gof\graph.py:447:
>>>>> UserWarning: You are creating a TensorVariable with float64 dtype. You
>>>>> requested an action via the Theano flag
>>>>> warn_float64={ignore,warn,raise,pdb}.
>>>>>
>>>>> cp = self.__class__(self.type, None, None, self.name)
>>>>>
>>>>> HostFromGpu(gpuarray) [id A] <TensorType(float32, scalar)> 'mean' 84
>>>>>
>>>>> |GpuElemwise{Composite{(i0 / Cast{float32}((Composite{Switch(LT(i0,
>>>>> i1), i2, i0)}(Composite{Switch(GE(i0, i1), i2, 
>>>>> i0)}(Composite{Switch(LT(i0,
>>>>> i1), i2, i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4,
>>>>> i5), i6, i7), i8, i9), i10, i11) - Switch(LT(Composite{Switch(LT(i0, i1),
>>>>> i2, i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, 
>>>>> i1),
>>>>> i2, i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i12, i13, i14, i15,
>>>>> i16), i17, i18), i19, i20), i21, i22), Composite{Switch(LT(i0, i1), i2,
>>>>> i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), 
>>>>> i2,
>>>>> i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4, i5), i6,
>>>>> i7), i8, i9), i10, i11)), Composite{Switch(LT(i0, i1), i2,
>>>>> i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), 
>>>>> i2,
>>>>> i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i12, i13, i14, i15, 
>>>>> i16),
>>>>> i17, i18), i19, i20), i21, i22), Composite{Switch(LT(i0, i1), i2,
>>>>> i0)}(Composite{Switch(GE(i0, i1), i2, i0)}(Composite{Switch(LT(i0, i1), 
>>>>> i2,
>>>>> i0)}(Composite{Switch(LT(i0, i1), (i2 + i3), i4)}(i1, i2, i3, i4, i5), i6,
>>>>> i7), i8, i9), i10, i11)))))}}[(0, 0)]<gpuarray> [id B]
>>>>> <GpuArrayType<None>(float32, ())> '' 83
>>>>>
>>>>> |GpuCAReduceCuda{add} [id C] <GpuArrayType<None>(float32, ())> '' 82
>>>>>
>>>>> | |GpuElemwise{Composite{EQ(Cast{int32}(i0), i1)}}[]<gpuarray> [id D]
>>>>> <GpuArrayType<None>(bool, (False,))> '' 81
>>>>>
>>>>> | |GpuSubtensor{int64:int64:} [id E] <GpuArrayType<None>(float32,
>>>>> (False,))> '' 27
>>>>>
>>>>> | | |<GpuArrayType<None>(float32, (False,))> [id F]
>>>>> <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> | | |ScalarFromTensor [id G] <int64> '' 13
>>>>>
>>>>> | | | |Elemwise{mul,no_inplace} [id H] <TensorType(int64, scalar)> '' 1
>>>>>
>>>>> | | | |TensorConstant{128} [id I] <TensorType(int64, scalar)>
>>>>>
>>>>> | | | |<TensorType(int64, scalar)> [id J] <TensorType(int64, scalar)>
>>>>>
>>>>> | | |ScalarFromTensor [id K] <int64> '' 15
>>>>>
>>>>> | | |Elemwise{Composite{(i0 * (i1 + i2))}} [id L] <TensorType(int64,
>>>>> scalar)> '' 2
>>>>>
>>>>> | | |TensorConstant{128} [id I] <TensorType(int64, scalar)>
>>>>>
>>>>> | | |TensorConstant{1} [id M] <TensorType(int64, scalar)>
>>>>>
>>>>> | | |<TensorType(int64, scalar)> [id J] <TensorType(int64, scalar)>
>>>>>
>>>>> | |GpuFromHost<None> [id N] <GpuArrayType<None>(int64, (False,))> '' 80
>>>>>
>>>>> | |Argmax [id O] <TensorType(int64, vector)> 'argmax' 79
>>>>>
>>>>> | |HostFromGpu(gpuarray) [id P] <TensorType(float32, matrix)> '' 78
>>>>>
>>>>> | | |GpuElemwise{Add}[(0, 0)]<gpuarray> [id Q]
>>>>> <GpuArrayType<None>(float32, (False, False))> '' 77
>>>>>
>>>>> | | |GpuGemm{inplace=True} [id R] <GpuArrayType<None>(float32, (False,
>>>>> False))> '' 76
>>>>>
>>>>> | | | |GpuAllocEmpty{dtype='float32', context_name=None} [id S]
>>>>> <GpuArrayType<None>(float32, (False, False))> '' 75
>>>>>
>>>>> | | | | |Subtensor{int64} [id T] <TensorType(int64, scalar)> '' 74
>>>>>
>>>>> | | | | | |Shape [id U] <TensorType(int64, vector)> '' 73
>>>>>
>>>>> | | | | | | |GpuReshape{2} [id V] <GpuArrayType<None>(float32, (False,
>>>>> False))> '' 72
>>>>>
>>>>> | | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 + i3)) + (i4 *
>>>>> Abs((i2 + i3)))))}}[(0, 2)]<gpuarray> [id W] <GpuArrayType<None>(float32,
>>>>> (False, False))> '' 71
>>>>>
>>>>> | | | | | | | |GpuArrayConstant{[[ 0.5]]} [id X]
>>>>> <GpuArrayType<None>(float32, (True, True))>
>>>>>
>>>>> | | | | | | | |GpuArrayConstant{[[ 0.1]]} [id Y]
>>>>> <GpuArrayType<None>(float32, (True, True))>
>>>>>
>>>>> | | | | | | | |GpuGemm{inplace=True} [id Z]
>>>>> <GpuArrayType<None>(float32, (False, False))> '' 70
>>>>>
>>>>> | | | | | | | | |GpuAllocEmpty{dtype='float32', context_name=None} [id
>>>>> BA] <GpuArrayType<None>(float32, (False, False))> '' 69
>>>>>
>>>>> | | | | | | | | | |Subtensor{int64} [id BB] <TensorType(int64,
>>>>> scalar)> '' 68
>>>>>
>>>>> | | | | | | | | | | |Shape [id BC] <TensorType(int64, vector)> '' 67
>>>>>
>>>>> | | | | | | | | | | | |GpuReshape{2} [id BD]
>>>>> <GpuArrayType<None>(float32, (False, False))> '' 66
>>>>>
>>>>> | | | | | | | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 + i3)) +
>>>>> (i4 * Abs((i2 + i3)))))}}[(0, 2)]<gpuarray> [id BE]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 65
>>>>>
>>>>> | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.5]]]]} [id BF]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.095]]]]} [id BG]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | | |GpuDnnConv{algo='time_on_shape_change',
>>>>> inplace=True} [id BH] <GpuArrayType<None>(float32, (False, False, False,
>>>>> False))> '' 64
>>>>>
>>>>> | | | | | | | | | | | | | |GpuContiguous [id BI]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 51
>>>>>
>>>>> | | | | | | | | | | | | | | |GpuReshape{4} [id BJ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 50
>>>>>
>>>>> | | | | | | | | | | | | | | |GpuElemwise{Composite{(i0 * ((i1 * (i2 +
>>>>> i3)) + (i4 * Abs((i2 + i3)))))}}[(0, 2)]<gpuarray> [id BK]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 49
>>>>>
>>>>> | | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.5]]]]} [id BF]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.1]]]]} [id BL]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | | | | | |GpuDnnConv{algo='time_on_shape_change',
>>>>> inplace=True} [id BM] <GpuArrayType<None>(float32, (False, False, False,
>>>>> False))> '' 48
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id BN]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 35
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |GpuReshape{4} [id BO]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 32
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |GpuSubtensor{int64:int64:} [id BP]
>>>>> <GpuArrayType<None>(float32, (False, False))> '' 26
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32,
>>>>> (False, False))> [id BQ] <GpuArrayType<None>(float32, (False, False))>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |ScalarFromTensor [id G] <int64>
>>>>> '' 13
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |ScalarFromTensor [id K] <int64>
>>>>> '' 15
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |TensorConstant{[128 3 32 32]} [id
>>>>> BR] <TensorType(int32, vector)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id BS]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 10
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32,
>>>>> (False, False, False, False))> [id BT] <GpuArrayType<None>(float32, 
>>>>> (False,
>>>>> False, False, False))>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuAllocEmpty{dtype='float32',
>>>>> context_name=None} [id BU] <GpuArrayType<None>(float32, (False, False,
>>>>> False, False))> '' 47
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Assert{msg='The convolution would
>>>>> produce an invalid shape (dim[0] < 0).'} [id BV] <TensorType(int64,
>>>>> scalar)> '' 44
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{0} [id BW]
>>>>> <TensorType(int64, scalar)> '' 38
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 35
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id BX]
>>>>> <TensorType(bool, scalar)> '' 41
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{0} [id BW]
>>>>> <TensorType(int64, scalar)> '' 38
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{0} [id BY]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Assert{msg='The convolution would
>>>>> produce an invalid shape (dim[1] < 0).'} [id BZ] <TensorType(int64,
>>>>> scalar)> '' 34
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{0} [id CA]
>>>>> <TensorType(int64, scalar)> '' 25
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 10
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id CB]
>>>>> <TensorType(bool, scalar)> '' 31
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{0} [id CA]
>>>>> <TensorType(int64, scalar)> '' 25
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{0} [id CC]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Assert{msg='The convolution would
>>>>> produce an invalid shape (dim[2] <= 0).'} [id CD] <TensorType(int64,
>>>>> scalar)> '' 46
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1
>>>>> - i2) * i3) + i4)) // i5) + i6)}}[(0, 0)] [id CE] <TensorType(int64,
>>>>> scalar)> '' 40
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |Shape_i{2} [id CF]
>>>>> <TensorType(int64, scalar)> '' 37
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 35
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |Shape_i{2} [id CG]
>>>>> <TensorType(int64, scalar)> '' 24
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 10
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CI]
>>>>> <TensorType(int32, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id CK]
>>>>> <TensorType(bool, scalar)> '' 43
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1
>>>>> - i2) * i3) + i4)) // i5) + i6)}}[(0, 0)] [id CE] <TensorType(int64,
>>>>> scalar)> '' 40
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{0} [id CL]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Assert{msg='The convolution would
>>>>> produce an invalid shape (dim[3] <= 0).'} [id CM] <TensorType(int64,
>>>>> scalar)> '' 45
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 -
>>>>> i2) * i3) + i4)) // i5) + i6)}}[(0, 0)] [id CN] <TensorType(int64, 
>>>>> scalar)>
>>>>> '' 39
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{3} [id CO]
>>>>> <TensorType(int64, scalar)> '' 36
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BN]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 35
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |Shape_i{3} [id CP]
>>>>> <TensorType(int64, scalar)> '' 23
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | | |GpuContiguous [id BS]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 10
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CI]
>>>>> <TensorType(int32, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id CQ]
>>>>> <TensorType(bool, scalar)> '' 42
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 -
>>>>> i2) * i3) + i4)) // i5) + i6)}}[(0, 0)] [id CN] <TensorType(int64, 
>>>>> scalar)>
>>>>> '' 39
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |TensorConstant{0} [id CR]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuDnnConvDesc{border_mode='valid',
>>>>> subsample=(2, 2), conv_mode='conv', precision='float32'} [id CS]
>>>>> <CDataType{cudnnConvolutionDescriptor_t}> '' 30
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |Shape [id CT] <TensorType(int64,
>>>>> vector)> '' 22
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |GpuContiguous [id BS]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 10
>>>>>
>>>>> | | | | | | | | | | | | | | | | |Constant{1.0} [id CU] <float32>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |Constant{0.0} [id CV] <float32>
>>>>>
>>>>> | | | | | | | | | | | | | | | |InplaceGpuDimShuffle{x,0,x,x} [id CW]
>>>>> <GpuArrayType<None>(float32, (True, False, True, True))> '' 9
>>>>>
>>>>> | | | | | | | | | | | | | | | | |<GpuArrayType<None>(float32,
>>>>> (False,))> [id CX] <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> | | | | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.1]]]]} [id BL]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | | | | |TensorConstant{[128 64 14 14]} [id CY]
>>>>> <TensorType(int32, vector)>
>>>>>
>>>>> | | | | | | | | | | | | | |GpuContiguous [id CZ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 8
>>>>>
>>>>> | | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False,
>>>>> False, False, False))> [id DA] <GpuArrayType<None>(float32, (False, False,
>>>>> False, False))>
>>>>>
>>>>> | | | | | | | | | | | | | |GpuAllocEmpty{dtype='float32',
>>>>> context_name=None} [id DB] <GpuArrayType<None>(float32, (False, False,
>>>>> False, False))> '' 63
>>>>>
>>>>> | | | | | | | | | | | | | | |Assert{msg='The convolution would produce
>>>>> an invalid shape (dim[0] < 0).'} [id DC] <TensorType(int64, scalar)> '' 60
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{0} [id DD] <TensorType(int64,
>>>>> scalar)> '' 54
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id BI]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 51
>>>>>
>>>>> | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id DE]
>>>>> <TensorType(bool, scalar)> '' 57
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{0} [id DD] <TensorType(int64,
>>>>> scalar)> '' 54
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{0} [id DF]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | |Assert{msg='The convolution would produce
>>>>> an invalid shape (dim[1] < 0).'} [id DG] <TensorType(int64, scalar)> '' 33
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{0} [id DH] <TensorType(int64,
>>>>> scalar)> '' 21
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id CZ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 8
>>>>>
>>>>> | | | | | | | | | | | | | | | |Elemwise{ge,no_inplace} [id DI]
>>>>> <TensorType(bool, scalar)> '' 29
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{0} [id DH] <TensorType(int64,
>>>>> scalar)> '' 21
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{0} [id DJ]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | |Assert{msg='The convolution would produce
>>>>> an invalid shape (dim[2] <= 0).'} [id DK] <TensorType(int64, scalar)> '' 
>>>>> 62
>>>>>
>>>>> | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2)
>>>>> * i3) + i4)) // i5) + i6)}}[(0, 0)] [id DL] <TensorType(int64, scalar)> ''
>>>>> 56
>>>>>
>>>>> | | | | | | | | | | | | | | | | |Shape_i{2} [id DM] <TensorType(int64,
>>>>> scalar)> '' 53
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |GpuContiguous [id BI]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 51
>>>>>
>>>>> | | | | | | | | | | | | | | | | |Shape_i{2} [id DN] <TensorType(int64,
>>>>> scalar)> '' 20
>>>>>
>>>>> | | | | | | | | | | | | | | | | | |GpuContiguous [id CZ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 8
>>>>>
>>>>> | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |TensorConstant{1} [id CI]
>>>>> <TensorType(int32, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id DO]
>>>>> <TensorType(bool, scalar)> '' 59
>>>>>
>>>>> | | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2)
>>>>> * i3) + i4)) // i5) + i6)}}[(0, 0)] [id DL] <TensorType(int64, scalar)> ''
>>>>> 56
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{0} [id DP]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | |Assert{msg='The convolution would produce
>>>>> an invalid shape (dim[3] <= 0).'} [id DQ] <TensorType(int64, scalar)> '' 
>>>>> 61
>>>>>
>>>>> | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) *
>>>>> i3) + i4)) // i5) + i6)}}[(0, 0)] [id DR] <TensorType(int64, scalar)> '' 
>>>>> 55
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{3} [id DS] <TensorType(int64,
>>>>> scalar)> '' 52
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id BI]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 51
>>>>>
>>>>> | | | | | | | | | | | | | | | |Shape_i{3} [id DT] <TensorType(int64,
>>>>> scalar)> '' 19
>>>>>
>>>>> | | | | | | | | | | | | | | | | |GpuContiguous [id CZ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 8
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{1} [id CI]
>>>>> <TensorType(int32, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{2} [id CJ]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | | |TensorConstant{1} [id CH]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | | |Elemwise{gt,no_inplace} [id DU]
>>>>> <TensorType(bool, scalar)> '' 58
>>>>>
>>>>> | | | | | | | | | | | | | | |Elemwise{Composite{(((i0 - (((i1 - i2) *
>>>>> i3) + i4)) // i5) + i6)}}[(0, 0)] [id DR] <TensorType(int64, scalar)> '' 
>>>>> 55
>>>>>
>>>>> | | | | | | | | | | | | | | |TensorConstant{0} [id DV]
>>>>> <TensorType(int8, scalar)>
>>>>>
>>>>> | | | | | | | | | | | | | |GpuDnnConvDesc{border_mode='valid',
>>>>> subsample=(2, 2), conv_mode='conv', precision='float32'} [id DW]
>>>>> <CDataType{cudnnConvolutionDescriptor_t}> '' 28
>>>>>
>>>>> | | | | | | | | | | | | | | |Shape [id DX] <TensorType(int64, vector)>
>>>>> '' 18
>>>>>
>>>>> | | | | | | | | | | | | | | |GpuContiguous [id CZ]
>>>>> <GpuArrayType<None>(float32, (False, False, False, False))> '' 8
>>>>>
>>>>> | | | | | | | | | | | | | |Constant{1.0} [id CU] <float32>
>>>>>
>>>>> | | | | | | | | | | | | | |Constant{0.0} [id CV] <float32>
>>>>>
>>>>> | | | | | | | | | | | | |InplaceGpuDimShuffle{x,0,x,x} [id DY]
>>>>> <GpuArrayType<None>(float32, (True, False, True, True))> '' 7
>>>>>
>>>>> | | | | | | | | | | | | | |<GpuArrayType<None>(float32, (False,))> [id
>>>>> DZ] <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> | | | | | | | | | | | | |GpuArrayConstant{[[[[ 0.095]]]]} [id BG]
>>>>> <GpuArrayType<None>(float32, (True, True, True, True))>
>>>>>
>>>>> | | | | | | | | | | | |TensorConstant{[ 128 3200]} [id EA]
>>>>> <TensorType(int32, vector)>
>>>>>
>>>>> | | | | | | | | | | |Constant{0} [id EB] <int64>
>>>>>
>>>>> | | | | | | | | | |Subtensor{int64} [id EC] <TensorType(int64,
>>>>> scalar)> '' 17
>>>>>
>>>>> | | | | | | | | | |Shape [id ED] <TensorType(int64, vector)> '' 6
>>>>>
>>>>> | | | | | | | | | | |w [id EE] <GpuArrayType<None>(float32, (False,
>>>>> False))>
>>>>>
>>>>> | | | | | | | | | |Constant{1} [id EF] <int64>
>>>>>
>>>>> | | | | | | | | |TensorConstant{0.25} [id EG] <TensorType(float64,
>>>>> scalar)>
>>>>>
>>>>> | | | | | | | | |GpuReshape{2} [id BD] <GpuArrayType<None>(float32,
>>>>> (False, False))> '' 66
>>>>>
>>>>> | | | | | | | | |w [id EE] <GpuArrayType<None>(float32, (False,
>>>>> False))>
>>>>>
>>>>> | | | | | | | | |TensorConstant{0.0} [id EH] <TensorType(float64,
>>>>> scalar)>
>>>>>
>>>>> | | | | | | | |InplaceGpuDimShuffle{x,0} [id EI]
>>>>> <GpuArrayType<None>(float32, (True, False))> '' 5
>>>>>
>>>>> | | | | | | | | |b [id EJ] <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> | | | | | | | |GpuArrayConstant{[[ 0.1]]} [id Y]
>>>>> <GpuArrayType<None>(float32, (True, True))>
>>>>>
>>>>> | | | | | | |TensorConstant{[128 390]} [id EK] <TensorType(int32,
>>>>> vector)>
>>>>>
>>>>> | | | | | |Constant{0} [id EB] <int64>
>>>>>
>>>>> | | | | |Subtensor{int64} [id EL] <TensorType(int64, scalar)> '' 16
>>>>>
>>>>> | | | | |Shape [id EM] <TensorType(int64, vector)> '' 4
>>>>>
>>>>> | | | | | |w [id EN] <GpuArrayType<None>(float32, (False, False))>
>>>>>
>>>>> | | | | |Constant{1} [id EF] <int64>
>>>>>
>>>>> | | | |TensorConstant{0.25} [id EG] <TensorType(float64, scalar)>
>>>>>
>>>>> | | | |GpuReshape{2} [id V] <GpuArrayType<None>(float32, (False,
>>>>> False))> '' 72
>>>>>
>>>>> | | | |w [id EN] <GpuArrayType<None>(float32, (False, False))>
>>>>>
>>>>> | | | |TensorConstant{0.0} [id EH] <TensorType(float64, scalar)>
>>>>>
>>>>> | | |InplaceGpuDimShuffle{x,0} [id EO] <GpuArrayType<None>(float32,
>>>>> (True, False))> '' 3
>>>>>
>>>>> | | |b [id EP] <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> | |TensorConstant{(1L,) of 1} [id EQ] <TensorType(int32, (True,))>
>>>>>
>>>>> |GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14
>>>>>
>>>>> | |Elemwise{Composite{(i0 * (i1 + i2))}} [id L] <TensorType(int64,
>>>>> scalar)> '' 2
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> | |Shape_i{0} [id EU] <TensorType(int64, scalar)> '' 0
>>>>>
>>>>> | |<GpuArrayType<None>(float32, (False,))> [id F]
>>>>> <GpuArrayType<None>(float32, (False,))>
>>>>>
>>>>> |GpuFromHost<None> [id ER] <GpuArrayType<None>(int64, ())> '' 14
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuArrayConstant{-1} [id EV] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12
>>>>>
>>>>> | |Elemwise{mul,no_inplace} [id H] <TensorType(int64, scalar)> '' 1
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> |GpuFromHost<None> [id EW] <GpuArrayType<None>(int64, ())> '' 12
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> |GpuFromHost<None> [id ET] <GpuArrayType<None>(int64, ())> '' 11
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> |GpuArrayConstant{0} [id ES] <GpuArrayType<None>(int8, ())>
>>>>>
>>>>> --
>>>>>
>>>>> ---
>>>>> You received this message because you are subscribed to the Google
>>>>> Groups "theano-users" group.
>>>>> To unsubscribe from this group and stop receiving emails from it, send
>>>>> an email to [email protected].
>>>>> For more options, visit https://groups.google.com/d/optout.
>>>>>
>>>>> --
>>>>>
>>>>> ---
>>>>> You received this message because you are subscribed to a topic in the
>>>>> Google Groups "theano-users" group.
>>>>> To unsubscribe from this topic, visit
>>>>> https://groups.google.com/d/topic/theano-users/-bAlrdp-IIQ/unsubscribe
>>>>> .
>>>>> To unsubscribe from this group and all its topics, send an email to
>>>>> [email protected].
>>>>>
>>>>>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to