== Abstract Syntax Tree ==

LogicalProject(_c0=[log_get($1)], _c1=[_UTF-16LE''], _c2=[_UTF-16LE''], 
_c3=[_UTF-16LE'ERROR'], _c4=[_UTF-16LE'Asia/Shanghai'], 
_c5=[_UTF-16LE'@timestamp'], kubernetes$container$name=[$3.container.name], 
clusterName=[$2])

+- LogicalFilter(condition=[error_exist($1)])

   +- LogicalTableScan(table=[[default_catalog, default_database, source, 
source: [KafkaTableSource(@timestamp, message, clusterName, kubernetes)]]])




== Optimized Logical Plan ==

Calc(select=[f00 AS _c0, _UTF-16LE'' AS _c1, _UTF-16LE'' AS _c2, 
_UTF-16LE'ERROR' AS _c3, _UTF-16LE'Asia/Shanghai' AS _c4, _UTF-16LE'@timestamp' 
AS _c5, f0 AS kubernetes$container$name, clusterName])

+- PythonCalc(select=[f0, clusterName, log_get(message) AS f00])

   +- Calc(select=[message, clusterName, kubernetes.container.name AS f0])

      +- PythonCalc(select=[message, kubernetes, clusterName, 
error_exist(message) AS f0])

         +- LegacyTableSourceScan(table=[[default_catalog, default_database, 
source, source: [KafkaTableSource(@timestamp, message, clusterName, 
kubernetes)]]], fields=[@timestamp, message, clusterName, kubernetes])




== Physical Execution Plan ==

Stage 1 : Data Source

 content : Source: KafkaTableSource(@timestamp, message, clusterName, 
kubernetes)




 Stage 2 : Operator

  content : SourceConversion(table=[default_catalog.default_database.source, 
source: [KafkaTableSource(@timestamp, message, clusterName, kubernetes)]], 
fields=[@timestamp, message, clusterName, kubernetes])

  ship_strategy : FORWARD




  Stage 3 : Operator

   content : StreamExecPythonCalc

   ship_strategy : FORWARD




   Stage 4 : Operator

    content : Calc(select=[message, clusterName, kubernetes.container.name AS 
f0])

    ship_strategy : FORWARD




    Stage 5 : Operator

     content : StreamExecPythonCalc

     ship_strategy : FORWARD




     Stage 6 : Operator

      content : Calc(select=[f00 AS _c0, _UTF-16LE'' AS _c1, _UTF-16LE'' AS 
_c2, _UTF-16LE'ERROR' AS _c3, _UTF-16LE'Asia/Shanghai' AS _c4, 
_UTF-16LE'@timestamp' AS _c5, f0 AS kubernetes$container$name, clusterName])

      ship_strategy : FORWARD

















在 2020-10-15 20:59:12,"Dian Fu" <[email protected]> 写道:
>可以把plan打印出来看一下?打印plan可以参考这个:https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/python/table-api-users-guide/intro_to_table_api.html#explain-tables
>
>> 在 2020年10月15日,下午7:02,whh_960101 <[email protected]> 写道:
>> 
>> hi,
>> 我刚才改了一下你的例子[1],通过from_elements构建一个source表
>> 然后使用我的udf
>> source.where(udf1(msg)=True).select("udf2(msg)").execute_insert('sink').get_job_client().get_job_execution_result().result()
>> 打印出来的结果能够很好的筛选出我想要的数据
>> 
>> 
>> 
>> 
>> 但是通过StreamTableEnvironment,连接kafka,取消息队列来构建source表,即之前那种写法
>> source  = st_env.from_path('source')
>> source.where(udf1(msg)=True).select("udf2(msg)").execute_insert('sink').get_job_client().get_job_execution_result().result()
>> 
>> 这个where筛选就失效了,最后打印出全部数据
>> 
>> 
>> 而只在where中使用udf,即
>> source.where(udf1(msg)=True).select("msg").execute_insert('sink').get_job_client().get_job_execution_result().result()
>> 打印结果就是经过筛选后的
>> 
>> 
>> 
>> 
>> 想请问一下这种问题出在哪里?
>> 
>> 
>> 
>> 
>> 
>> 
>> 在 2020-10-15 16:57:39,"Xingbo Huang" <[email protected]> 写道:
>>> Hi,
>>> 我们有例子覆盖你这种情况的[1],你需要看下你udf1的逻辑是什么样的
>>> 
>>> 
>>> [1]
>>> https://github.com/apache/flink/blob/release-1.11/flink-python/pyflink/table/tests/test_udf.py#L67
>>> 
>>> Best,
>>> Xingbo
>>> 
>>> whh_960101 <[email protected]> 于2020年10月15日周四 下午2:30写道:
>>> 
>>>> 您好,我使用pyflink时的代码如下,有如下问题:
>>>> 
>>>> 
>>>> source  = st_env.from_path('source')
>>>> #st_env是StreamTableEnvironment,source是kafka源端
>>>> #只在where语句中加udf1 (input_types =DataTypes.STRING(), result_type =
>>>> DataTypes.BOOLEAN())
>>>> table =
>>>> source.select("msg").where(udf1(msg)=True).execute_insert('sink').get_job_client().get_job_execution_result().result()
>>>> 
>>>> 
>>>> 这样打印出来的结果很好的筛选了数据
>>>> 
>>>> 
>>>> 但如果在select语句中加另一个udf2 (input_types =DataTypes.STRING(), result_type =
>>>> DataTypes.STRING())(将msg简单处理为新的String)
>>>> table =
>>>> source.select("udf2(msg)").where(udf1(msg)=True).execute_insert('sink').get_job_client().get_job_execution_result().result()
>>>> 这个where筛选就失效了,最后打印出全部数据
>>>> 
>>>> 
>>>> 如果改成where在前也不行,换成filter也不行
>>>> table =
>>>> source.where(udf1(msg)=True).select("udf2(msg)").execute_insert('sink').get_job_client().get_job_execution_result().result()
>>>> 
>>>> 
>>>> select、where中的udf会冲突吗?这个问题该怎么解决?
>>>> 希望您们能够给予解答!感谢!
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>>>> 
>> 
>> 
>> 
>> 
>> 

回复