各位老师,请教一下关于flink 事件时间窗口的执行时间点的相关问题;
我使用的窗口是:TumblingEventTimeWindows(Time.minutes(1L)),我使用的时间定义是System.currentTimeMillis(),watermark是2秒,
但是当我发送一条数据后,过了5分钟之后,窗口都没有触发计算,想请各位老师帮忙看一下程序的问题所在:
相关代码以及样例数据如下:
|
package job;
import bean.MidInfo3;
import bean.Result;
import bean2.BaseInfo2;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import config.FlinkConfig;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.JoinFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import 
org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import 
org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import 
org.apache.flink.streaming.api.windowing.triggers.ContinuousEventTimeTrigger;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import utils.DateUtil;
import utils.JdbcUtil;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.time.Duration;
import java.util.HashMap;
import java.util.Properties;

public class RytLogAnly9 {
public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
        env.disableOperatorChaining();
//1、消费Kafka中的数据
String servers = FlinkConfig.config.getProperty("dev_bootstrap.servers");
        String topicName = FlinkConfig.config.getProperty("dev_topicName");
        String groupId = FlinkConfig.config.getProperty("dev_groupId");
        String devMode = FlinkConfig.config.getProperty("dev_mode");
        Properties prop = new Properties();
        prop.setProperty("bootstrap.servers", servers);
        prop.setProperty("group.id", groupId);
        prop.setProperty("auto.offset.reset", devMode);
        DataStreamSource<String> sourceStream = env.addSource(new 
FlinkKafkaConsumer<String>(topicName, new SimpleStringSchema(), prop));
        sourceStream.print("最源端的数据sourceStream");

//2、对原始数据进行处理,获取到自己需要的数据,生成BaseInfo2基类数据
SingleOutputStreamOperator<BaseInfo2> baseInfoStream = sourceStream.map(new 
MapFunction<String, BaseInfo2>() {
@Override
public BaseInfo2 map(String value) throws Exception {
                JSONObject jsonObject = JSON.parseObject(value);
//获取到不同的服务器IP
String serverIp = jsonObject.getString("ip");
//获取到不同的data的数据
String datas = jsonObject.getString("data");

                String[] splits = datas.split("\n");
                HashMap<String, String> dataMap = new HashMap<>();
//将time填充到自定义类型中,用来判断同一个num的请求以及应答时间
String time = splits[0].substring(7, 19).replace("-", "").trim();
//将subData填充到自定义类型中,用来判断时请求还是应答
String subData = datas.substring(0, 10);
for (int i = 0; i < splits.length; i++) {
if (splits[i].contains("=")) {
                        splits[i] = splits[i].replaceFirst("=", "&");
                        String[] temp = splits[i].split("&");
if (temp.length > 1) {
                            dataMap.put(temp[0].toLowerCase(), temp[1]);
                        }
                    }
                }
return new BaseInfo2(dataMap.get("action"), "需要去MySQL中查找对应的功能描述", serverIp, 
DateUtil.string2Long(time), dataMap.get("handleserialno"), subData, 
System.currentTimeMillis());
            }
        
}).assignTimestampsAndWatermarks(WatermarkStrategy.<BaseInfo2>forBoundedOutOfOrderness(Duration.ofSeconds(2L)).withTimestampAssigner((element,
 recordTimestamp) -> element.getEvenTime()));
        baseInfoStream.print("不加功能描述的 baseInfoStream");

//3、上述的数据流中的action仅仅是数字,需要关联一下MySQL去拿到对应的功能中文描述
SingleOutputStreamOperator<BaseInfo2> completeInfoStream = 
baseInfoStream.map(new MapFunction<BaseInfo2, BaseInfo2>() {
@Override
public BaseInfo2 map(BaseInfo2 value) throws Exception {
//拿到数据中携带的数字的action
String actionId = value.getFuncId();
                System.out.println("数据中的action编码是: " + actionId);
                String actionName = null;
                Connection connection = null;
                PreparedStatement ps = null;

//根据数据的action去MySQL中查找到对应的中午注释
try {
                    String sql = "select action_name from ActionType where 
action = ?";
                    connection = JdbcUtil.getConnection();
                    ps = connection.prepareStatement(sql);
                    ps.setString(1, actionId);
                    ResultSet resultSet = ps.executeQuery();
                    System.out.println("resultSet是" + resultSet);
if (resultSet.next()) {
                        actionName = resultSet.getString("action_name");
                    }
                } catch (Exception e) {
throw new RuntimeException(e);
                } finally {
                    JdbcUtil.closeResource(connection, ps);
                }
return new BaseInfo2(value.getFuncId(), actionName, value.getServerIp(), 
value.getBaseTime(), value.getHandleSerialNo(), value.getInfo(), 
value.getEvenTime());
            }
        
}).assignTimestampsAndWatermarks(WatermarkStrategy.<BaseInfo2>forBoundedOutOfOrderness(Duration.ofSeconds(2L)).withTimestampAssigner((element,
 recordTimestamp) -> element.getEvenTime()));
        completeInfoStream.print("加上中文描述的 completeInfoStream");

        SingleOutputStreamOperator<BaseInfo2> requestDataStream = 
completeInfoStream.filter(new FilterFunction<BaseInfo2>() {
@Override
public boolean filter(BaseInfo2 baseInfo2) throws Exception {
return baseInfo2.getInfo().contains("请求");
            }
        });
        SingleOutputStreamOperator<BaseInfo2> answerDataStream = 
completeInfoStream.filter(new FilterFunction<BaseInfo2>() {
@Override
public boolean filter(BaseInfo2 baseInfo2) throws Exception {
return baseInfo2.getInfo().contains("应答");
            }
        });
        requestDataStream.print("请求流是 requestDataStream");
        answerDataStream.print("应答流是 answerDataStream");

        DataStream<MidInfo3> joinStream = 
requestDataStream.join(answerDataStream)
                .where(BaseInfo2::getHandleSerialNo)
                .equalTo(BaseInfo2::getHandleSerialNo)
                .window(TumblingEventTimeWindows.of(Time.minutes(1L)))
                .apply(new JoinFunction<BaseInfo2, BaseInfo2, MidInfo3>() {
@Override
public MidInfo3 join(BaseInfo2 first, BaseInfo2 second) throws Exception {
                        System.out.println("以关联:" + first.getFuncId() + 
second.getEvenTime());
                        System.out.println("关联:" + first.getEvenTime() +"|" 
+second.getEvenTime()+"执行时间:"+System.currentTimeMillis());
return new MidInfo3(first.getFuncId(), first.getFuncIdDesc(), 
first.getServerIp(), first.getBaseTime(), second.getBaseTime(), 
first.getFuncId() + first.getServerIp(), first.getEvenTime());
                    }
                });
        joinStream.print("joinStream:");
        System.out.println("joinTime:"+System.currentTimeMillis());
        joinStream.keyBy(new KeySelector<MidInfo3, String>() {
@Override
public String getKey(MidInfo3 value) throws Exception {
return value.getFuncId() + value.getServerIp();
            }
        }).process(new ProcessFunction<MidInfo3, Result>() {
private ValueState<Long> timeState;

@Override
public void open(Configuration parameters) throws Exception {
                
System.out.println("加载的是process中的open方法"+System.currentTimeMillis());
                ValueStateDescriptor<Long> timeStateDescriptor = new 
ValueStateDescriptor<>("timeState", Long.class);
// 过期状态清除
StateTtlConfig stateTtlConfig = StateTtlConfig
                        
.newBuilder(org.apache.flink.api.common.time.Time.days(1))
                        
.setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
                        
.setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
                        .build();
// 开启ttl
timeStateDescriptor.enableTimeToLive(stateTtlConfig);

this.timeState = getRuntimeContext().getState(timeStateDescriptor);

            }

@Override
public void processElement(MidInfo3 value, ProcessFunction<MidInfo3, 
Result>.Context ctx, Collector<Result> out) throws Exception {
//获取到当前的状态值
if (null==timeState.value()){
timeState.update(value.getAnswerTime()-value.getRequesTime());
                }else {
if ((value.getAnswerTime() - value.getRequesTime()) < timeState.value()) {
timeState.update((value.getAnswerTime() - value.getRequesTime()));
                    }
                }

                out.collect(new Result(value.getFuncId(), 
value.getFuncIdDesc(), value.getServerIp(), timeState.value()));

            }
        }).print("结果是");

        env.execute();
    }
}



相关的数据样例如下;
{"ip":"10.125.8.20230525_0856","data":"请求: -- 14:28:05.111 -- 
<44.15050>1D971BEEF138370\nAction=100\nMobileCode=13304431188\nReqno=380\niPhoneKey=1681799375200\nCFrom=dbzq.android\nTFrom=newandroid\nGateWayIp=124.234.116.150\nHandleSerialNo=20230525_0856lmuqbAABLOgVTU/3lQOcAAAClAAAABQAAAP9ZAACQHAAAAAAAAAAAAACQHAAAdAAAAGJIZDhiSzVUQUFBVWVOaFNVLzNsUU5ZQUFBREhEd0FBQXdBQ0FBa0FBQUNRSEFBQUFBQUFBQUFBQUFDUUhBQUFJZ0FBQUFGSUFBQUFBQUZTQXdBQUFETTRNQUZKRFFBQUFERTJPREUzT1Rrek56VXlNREFBAA==\nGateWayPort=41912\nclientversion=1.01.110\ntztreqfrom=android.webview\nReqlinkType=2\nnewindex=1\nReqTag=96756351=9=2=0.2.134739166=1681799375201\ntztsno=b8e947dc8498edfb9c7605f290fc13ba\npartenerName=zzinfo\nuniqueid=1C0FF05B-D047-45B4-8212-6AD8627DBA4F\nEmptyFields=Token&\ntztSDKType=0\n"}
{"ip":"10.125.8.20230525_0856","data":"应答: -- 14:28:05.111 -- 
<44.15050>1D971BEEF138370\nAction=100\nMobileCode=13304431188\nReqno=380\niPhoneKey=1681799375200\nCFrom=dbzq.android\nTFrom=newandroid\nGateWayIp=124.234.116.150\nHandleSerialNo=20230525_0856lmuqbAABLOgVTU/3lQOcAAAClAAAABQAAAP9ZAACQHAAAAAAAAAAAAACQHAAAdAAAAGJIZDhiSzVUQUFBVWVOaFNVLzNsUU5ZQUFBREhEd0FBQXdBQ0FBa0FBQUNRSEFBQUFBQUFBQUFBQUFDUUhBQUFJZ0FBQUFGSUFBQUFBQUZTQXdBQUFETTRNQUZKRFFBQUFERTJPREUzT1Rrek56VXlNREFBAA==\nGateWayPort=41912\nclientversion=1.01.110\ntztreqfrom=android.webview\nReqlinkType=2\nnewindex=1\nReqTag=96756351=9=2=0.2.134739166=1681799375201\ntztsno=b8e947dc8498edfb9c7605f290fc13ba\npartenerName=zzinfo\nuniqueid=1C0FF05B-D047-45B4-8212-6AD8627DBA4F\nEmptyFields=Token&\ntztSDKType=0\n"}
|

回复