如果你只发送了一条数据,那么watermark不会推进,就不会触发窗口计算。你需要更多数据。
小昌同学 <ccc0606fight...@163.com> 于2023年5月25日周四 09:32写道: > > 各位老师,请教一下关于flink 事件时间窗口的执行时间点的相关问题; > 我使用的窗口是:TumblingEventTimeWindows(Time.minutes(1L)),我使用的时间定义是System.currentTimeMillis(),watermark是2秒, > 但是当我发送一条数据后,过了5分钟之后,窗口都没有触发计算,想请各位老师帮忙看一下程序的问题所在: > 相关代码以及样例数据如下: > | > package job; > import bean.MidInfo3; > import bean.Result; > import bean2.BaseInfo2; > import com.alibaba.fastjson.JSON; > import com.alibaba.fastjson.JSONObject; > import config.FlinkConfig; > import org.apache.flink.api.common.eventtime.WatermarkStrategy; > import org.apache.flink.api.common.functions.FilterFunction; > import org.apache.flink.api.common.functions.JoinFunction; > import org.apache.flink.api.common.functions.MapFunction; > import org.apache.flink.api.common.serialization.SimpleStringSchema; > import org.apache.flink.api.common.state.StateTtlConfig; > import org.apache.flink.api.common.state.ValueState; > import org.apache.flink.api.common.state.ValueStateDescriptor; > import org.apache.flink.api.java.functions.KeySelector; > import org.apache.flink.configuration.Configuration; > import org.apache.flink.streaming.api.datastream.ConnectedStreams; > import org.apache.flink.streaming.api.datastream.DataStream; > import org.apache.flink.streaming.api.datastream.DataStreamSource; > import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; > import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; > import org.apache.flink.streaming.api.functions.ProcessFunction; > import org.apache.flink.streaming.api.functions.co.CoMapFunction; > import > org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction; > import > org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows; > import > org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows; > import org.apache.flink.streaming.api.windowing.time.Time; > import > org.apache.flink.streaming.api.windowing.triggers.ContinuousEventTimeTrigger; > import org.apache.flink.streaming.api.windowing.windows.TimeWindow; > import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer; > import org.apache.flink.util.Collector; > import utils.DateUtil; > import utils.JdbcUtil; > > import java.sql.Connection; > import java.sql.PreparedStatement; > import java.sql.ResultSet; > import java.time.Duration; > import java.util.HashMap; > import java.util.Properties; > > public class RytLogAnly9 { > public static void main(String[] args) throws Exception { > StreamExecutionEnvironment env = > StreamExecutionEnvironment.getExecutionEnvironment(); > env.disableOperatorChaining(); > //1、消费Kafka中的数据 > String servers = FlinkConfig.config.getProperty("dev_bootstrap.servers"); > String topicName = FlinkConfig.config.getProperty("dev_topicName"); > String groupId = FlinkConfig.config.getProperty("dev_groupId"); > String devMode = FlinkConfig.config.getProperty("dev_mode"); > Properties prop = new Properties(); > prop.setProperty("bootstrap.servers", servers); > prop.setProperty("group.id", groupId); > prop.setProperty("auto.offset.reset", devMode); > DataStreamSource<String> sourceStream = env.addSource(new > FlinkKafkaConsumer<String>(topicName, new SimpleStringSchema(), prop)); > sourceStream.print("最源端的数据sourceStream"); > > //2、对原始数据进行处理,获取到自己需要的数据,生成BaseInfo2基类数据 > SingleOutputStreamOperator<BaseInfo2> baseInfoStream = sourceStream.map(new > MapFunction<String, BaseInfo2>() { > @Override > public BaseInfo2 map(String value) throws Exception { > JSONObject jsonObject = JSON.parseObject(value); > //获取到不同的服务器IP > String serverIp = jsonObject.getString("ip"); > //获取到不同的data的数据 > String datas = jsonObject.getString("data"); > > String[] splits = datas.split("\n"); > HashMap<String, String> dataMap = new HashMap<>(); > //将time填充到自定义类型中,用来判断同一个num的请求以及应答时间 > String time = splits[0].substring(7, 19).replace("-", "").trim(); > //将subData填充到自定义类型中,用来判断时请求还是应答 > String subData = datas.substring(0, 10); > for (int i = 0; i < splits.length; i++) { > if (splits[i].contains("=")) { > splits[i] = splits[i].replaceFirst("=", "&"); > String[] temp = splits[i].split("&"); > if (temp.length > 1) { > dataMap.put(temp[0].toLowerCase(), temp[1]); > } > } > } > return new BaseInfo2(dataMap.get("action"), "需要去MySQL中查找对应的功能描述", serverIp, > DateUtil.string2Long(time), dataMap.get("handleserialno"), subData, > System.currentTimeMillis()); > } > > }).assignTimestampsAndWatermarks(WatermarkStrategy.<BaseInfo2>forBoundedOutOfOrderness(Duration.ofSeconds(2L)).withTimestampAssigner((element, > recordTimestamp) -> element.getEvenTime())); > baseInfoStream.print("不加功能描述的 baseInfoStream"); > > //3、上述的数据流中的action仅仅是数字,需要关联一下MySQL去拿到对应的功能中文描述 > SingleOutputStreamOperator<BaseInfo2> completeInfoStream = > baseInfoStream.map(new MapFunction<BaseInfo2, BaseInfo2>() { > @Override > public BaseInfo2 map(BaseInfo2 value) throws Exception { > //拿到数据中携带的数字的action > String actionId = value.getFuncId(); > System.out.println("数据中的action编码是: " + actionId); > String actionName = null; > Connection connection = null; > PreparedStatement ps = null; > > //根据数据的action去MySQL中查找到对应的中午注释 > try { > String sql = "select action_name from ActionType where > action = ?"; > connection = JdbcUtil.getConnection(); > ps = connection.prepareStatement(sql); > ps.setString(1, actionId); > ResultSet resultSet = ps.executeQuery(); > System.out.println("resultSet是" + resultSet); > if (resultSet.next()) { > actionName = resultSet.getString("action_name"); > } > } catch (Exception e) { > throw new RuntimeException(e); > } finally { > JdbcUtil.closeResource(connection, ps); > } > return new BaseInfo2(value.getFuncId(), actionName, value.getServerIp(), > value.getBaseTime(), value.getHandleSerialNo(), value.getInfo(), > value.getEvenTime()); > } > > }).assignTimestampsAndWatermarks(WatermarkStrategy.<BaseInfo2>forBoundedOutOfOrderness(Duration.ofSeconds(2L)).withTimestampAssigner((element, > recordTimestamp) -> element.getEvenTime())); > completeInfoStream.print("加上中文描述的 completeInfoStream"); > > SingleOutputStreamOperator<BaseInfo2> requestDataStream = > completeInfoStream.filter(new FilterFunction<BaseInfo2>() { > @Override > public boolean filter(BaseInfo2 baseInfo2) throws Exception { > return baseInfo2.getInfo().contains("请求"); > } > }); > SingleOutputStreamOperator<BaseInfo2> answerDataStream = > completeInfoStream.filter(new FilterFunction<BaseInfo2>() { > @Override > public boolean filter(BaseInfo2 baseInfo2) throws Exception { > return baseInfo2.getInfo().contains("应答"); > } > }); > requestDataStream.print("请求流是 requestDataStream"); > answerDataStream.print("应答流是 answerDataStream"); > > DataStream<MidInfo3> joinStream = > requestDataStream.join(answerDataStream) > .where(BaseInfo2::getHandleSerialNo) > .equalTo(BaseInfo2::getHandleSerialNo) > .window(TumblingEventTimeWindows.of(Time.minutes(1L))) > .apply(new JoinFunction<BaseInfo2, BaseInfo2, MidInfo3>() { > @Override > public MidInfo3 join(BaseInfo2 first, BaseInfo2 second) throws Exception { > System.out.println("以关联:" + first.getFuncId() + > second.getEvenTime()); > System.out.println("关联:" + first.getEvenTime() +"|" > +second.getEvenTime()+"执行时间:"+System.currentTimeMillis()); > return new MidInfo3(first.getFuncId(), first.getFuncIdDesc(), > first.getServerIp(), first.getBaseTime(), second.getBaseTime(), > first.getFuncId() + first.getServerIp(), first.getEvenTime()); > } > }); > joinStream.print("joinStream:"); > System.out.println("joinTime:"+System.currentTimeMillis()); > joinStream.keyBy(new KeySelector<MidInfo3, String>() { > @Override > public String getKey(MidInfo3 value) throws Exception { > return value.getFuncId() + value.getServerIp(); > } > }).process(new ProcessFunction<MidInfo3, Result>() { > private ValueState<Long> timeState; > > @Override > public void open(Configuration parameters) throws Exception { > > System.out.println("加载的是process中的open方法"+System.currentTimeMillis()); > ValueStateDescriptor<Long> timeStateDescriptor = new > ValueStateDescriptor<>("timeState", Long.class); > // 过期状态清除 > StateTtlConfig stateTtlConfig = StateTtlConfig > > .newBuilder(org.apache.flink.api.common.time.Time.days(1)) > > .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite) > > .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired) > .build(); > // 开启ttl > timeStateDescriptor.enableTimeToLive(stateTtlConfig); > > this.timeState = getRuntimeContext().getState(timeStateDescriptor); > > } > > @Override > public void processElement(MidInfo3 value, ProcessFunction<MidInfo3, > Result>.Context ctx, Collector<Result> out) throws Exception { > //获取到当前的状态值 > if (null==timeState.value()){ > timeState.update(value.getAnswerTime()-value.getRequesTime()); > }else { > if ((value.getAnswerTime() - value.getRequesTime()) < timeState.value()) { > timeState.update((value.getAnswerTime() - value.getRequesTime())); > } > } > > out.collect(new Result(value.getFuncId(), > value.getFuncIdDesc(), value.getServerIp(), timeState.value())); > > } > }).print("结果是"); > > env.execute(); > } > } > > > > 相关的数据样例如下; > {"ip":"10.125.8.20230525_0856","data":"请求: -- 14:28:05.111 -- > <44.15050>1D971BEEF138370\nAction=100\nMobileCode=13304431188\nReqno=380\niPhoneKey=1681799375200\nCFrom=dbzq.android\nTFrom=newandroid\nGateWayIp=124.234.116.150\nHandleSerialNo=20230525_0856lmuqbAABLOgVTU/3lQOcAAAClAAAABQAAAP9ZAACQHAAAAAAAAAAAAACQHAAAdAAAAGJIZDhiSzVUQUFBVWVOaFNVLzNsUU5ZQUFBREhEd0FBQXdBQ0FBa0FBQUNRSEFBQUFBQUFBQUFBQUFDUUhBQUFJZ0FBQUFGSUFBQUFBQUZTQXdBQUFETTRNQUZKRFFBQUFERTJPREUzT1Rrek56VXlNREFBAA==\nGateWayPort=41912\nclientversion=1.01.110\ntztreqfrom=android.webview\nReqlinkType=2\nnewindex=1\nReqTag=96756351=9=2=0.2.134739166=1681799375201\ntztsno=b8e947dc8498edfb9c7605f290fc13ba\npartenerName=zzinfo\nuniqueid=1C0FF05B-D047-45B4-8212-6AD8627DBA4F\nEmptyFields=Token&\ntztSDKType=0\n"} > {"ip":"10.125.8.20230525_0856","data":"应答: -- 14:28:05.111 -- > <44.15050>1D971BEEF138370\nAction=100\nMobileCode=13304431188\nReqno=380\niPhoneKey=1681799375200\nCFrom=dbzq.android\nTFrom=newandroid\nGateWayIp=124.234.116.150\nHandleSerialNo=20230525_0856lmuqbAABLOgVTU/3lQOcAAAClAAAABQAAAP9ZAACQHAAAAAAAAAAAAACQHAAAdAAAAGJIZDhiSzVUQUFBVWVOaFNVLzNsUU5ZQUFBREhEd0FBQXdBQ0FBa0FBQUNRSEFBQUFBQUFBQUFBQUFDUUhBQUFJZ0FBQUFGSUFBQUFBQUZTQXdBQUFETTRNQUZKRFFBQUFERTJPREUzT1Rrek56VXlNREFBAA==\nGateWayPort=41912\nclientversion=1.01.110\ntztreqfrom=android.webview\nReqlinkType=2\nnewindex=1\nReqTag=96756351=9=2=0.2.134739166=1681799375201\ntztsno=b8e947dc8498edfb9c7605f290fc13ba\npartenerName=zzinfo\nuniqueid=1C0FF05B-D047-45B4-8212-6AD8627DBA4F\nEmptyFields=Token&\ntztSDKType=0\n"} > |