hi, i have a trouble about addition outputs with SparkRunner.
Here if my code, when i use DirectRunner, everything runs OK, but if i replace
DirectRunner with SparkRunner, the code can't run normally.
public class UnifiedDataExtraction {
private static TupleTag<String> rawDataTag = new TupleTag<String>() {
};
private static TupleTag<String> exceptionTag = new TupleTag<String>() {
};
public static void main(String[] args) {
System.setProperty("hadoop.home.dir", ConstantsOwn.HADOOP_HOME);
SparkPipelineOptions options =
PipelineOptionsFactory.create().as(SparkPipelineOptions.class);
options.setSparkMaster(ConstantsOwn.SPARK_MASTER);
options.setRunner(SparkRunner.class);
// options.setRunner(DirectRunner.class);
options.setStorageLevel("MEMORY_ONLY");
options.setAppName(ConstantsOwn.SPARK_APPNAME);
options.setBatchIntervalMillis(1000L);
options.setEnableSparkMetricSinks(false);
Pipeline p = Pipeline.create(options);
List<String> topics =
Arrays.asList(ConstantsOwn.KAFKA_TOPIC_ANTIFRAUD.split(","));
PCollection<String> rawData = p.apply(KafkaIO.<Void, String>read()
.withBootstrapServers(ConstantsOwn.KAFKA_ADDRESS)
.withTopics(topics)
//.withConsumerFactoryFn(new CafintechConsumerFactoryFn())
.withKeyCoder(VoidCoder.of())
.withValueCoder(StringUtf8Coder.of())
.withKeyDeserializer(VoidDeserializer.class)
.withValueDeserializer(StringDeserializer.class)
.withoutMetadata()
).apply(Values.<String>create());
rawData.apply(ParDo.of(SimpleViewDoFn.of(true))); //simply print each
elment of rawData. Able to run normally ①
PCollectionTuple results = rawData.apply("logAnatomyTest",
// ②
ParDo.of(
new DoFn<String, String>() {
@ProcessElement
public void process(ProcessContext c) {
String element = c.element();
System.out.println("===="+element);
if (!element.equals("EOF")) {
c.output(c.element());
}
}
}
).withOutputTags(rawDataTag, TupleTagList.of(exceptionTag))
);
p.run().waitUntilFinish();
}
}
in the privious code, the code that be commented with ① can be able to run
normally,but ②,i can't get anything.
here is my beam version
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>0.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>0.7.0-SNAPSHOT</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-kafka</artifactId>
<version>0.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark</artifactId>
<version>0.7.0-SNAPSHOT</version>
</dependency>
someone please help me.
Sent from Mailbird
[http://www.getmailbird.com/?utm_source=Mailbird&utm_medium=email&utm_campaign=sent-from-mailbird]
On 2017/4/28 4:43:23, Aviem Zur <[email protected]> wrote:
Yes. Spark streaming support is still experimental and this issue exists in
Beam 0.6.0
This has since been fixed and the fix will be a part of the upcoming release.
Since this isn't the first time a user has encountered this I've created a JIRA
ticket for better visibility for this issue:
https://issues.apache.org/jira/browse/BEAM-2106
[https://issues.apache.org/jira/browse/BEAM-2106]
Thanks for reaching out! Please feel fry to try out your pipeline using Beam
master branch or one of the nightly SNAPSHOT builds.
On Thu, Apr 27, 2017 at 9:58 AM 4498237@qq <[email protected]
[mailto:[email protected]]> wrote:
Here is my maven configuration, thank you.
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
<version>0.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-direct-java</artifactId>
<version>0.6.0</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-io-kafka</artifactId>
<version>0.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark</artifactId>
<version>0.6.0</version>
</dependency>
On 26 Apr 2017, at 6:58 PM, Aviem Zur <[email protected]
[mailto:[email protected]]> wrote:
Hi,
Can you please share which version of Beam you are using?
On Wed, Apr 26, 2017 at 1:51 PM 4498237@qq <[email protected]
[mailto:[email protected]]> wrote:
hi, here is my program that about additional outputs for Apache Beam and the
result :
public class DataExtraction2 {
public static void main(String[] args) {
System.setProperty("hadoop.home.dir", "C://hadoop/hadoop-2.6.1");
SparkPipelineOptions options =
PipelineOptionsFactory.as(SparkPipelineOptions.class);
options.setSparkMaster("local[4]");
// options.setCheckpointDir("./checkpoint");
options.setRunner(SparkRunner.class);
// options.setRunner(DirectRunner.class);
options.setStorageLevel("MEMORY_ONLY");
options.setAppName("testMavenDependency");
options.setBatchIntervalMillis(1000L);
options.setEnableSparkMetricSinks(false);
Pipeline p = Pipeline.create(options);
List<String> topics = Arrays.asList("beamOnSparkTest".split(","));
final TupleTag<String> rawDataTag = new TupleTag<String>() {
};
final TupleTag<String> exceptionTag = new TupleTag<String>() {
};
final TupleTag<String> riskEventLogTag = new TupleTag<String>() {
};
final TupleTag<String> statisticsTag = new TupleTag<String>() {
};
final TupleTag<String> errorTargetLogTag = new TupleTag<String>() {
};
final TupleTag<String> equipmentLogTag = new TupleTag<String>() {
};
final TupleTag<String> performanceLogTag = new TupleTag<String>() {
};
PCollection<String> rawData = p.apply(KafkaIO.<Void, String>read()
.withBootstrapServers("172.17.1.138:9092
[http://172.17.1.138:9092/],172.17.1.137:9092 [http://172.17.1.137:9092/]")
.withTopics(topics)
.withConsumerFactoryFn(new CafintechConsumerFactoryFn())
.withKeyCoder(VoidCoder.of())
.withValueCoder(StringUtf8Coder.of())
.withoutMetadata()
).apply(Values.<String>create());
PCollectionTuple results = rawData.apply(
ParDo.withOutputTags(rawDataTag,
TupleTagList.of(exceptionTag)
.and(riskEventLogTag)
.and(statisticsTag)
.and(errorTargetLogTag)
.and(equipmentLogTag)
.and(performanceLogTag))
.of(new DoFn<String, String>() {
@ProcessElement
public void processElement(ProcessContext c) {
String idCoop = "";
int eventType = 0;
int osPlatformType = -1;
String innerDecision = "";
String outterDecision = "";
// Date appTime = new Date();
String eventId = "";
//String strategyList = "";
String uuid = "";
String phoneNo = "";
int equipmentType = -1;
int antiFraudTime = -1;
......
}
}));
p.run().waitUntilFinish();
}
}
when i run this program, i get result:
.....
....
2017-04-26 15:06:13,077 [pool-1-thread-1]
[org.apache.spark.streaming.StreamingContext] [ERROR] - Error starting the
context, marking it as stopped
java.io.NotSerializableException: DStream checkpointing has been enabled but
the DStreams with their functions are not serializable
org.apache.beam.runners.spark.translation.EvaluationContext
Serialization stack:
- object not serializable (class:
org.apache.beam.runners.spark.translation.EvaluationContext, value:
org.apache.beam.runners.spark.translation.EvaluationContext@2807813e)
- field (class:
org.apache.beam.runners.spark.translation.streaming.StreamingTransformTranslator$9$1,
name: val$context, type: class
org.apache.beam.runners.spark.translation.EvaluationContext)
- object (class
org.apache.beam.runners.spark.translation.streaming.StreamingTransformTranslator$9$1,
org.apache.beam.runners.spark.translation.streaming.StreamingTransformTranslator$9$1@560cd8a8)
- field (class:
org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$transformToPair$1,
name: transformFunc$3, type: interface
org.apache.spark.api.java.function.Function)
- object (class
org.apache.spark.streaming.api.java.JavaDStreamLike$$anonfun$transformToPair$1,
<function1>)
- field (class:
org.apache.spark.streaming.dstream.DStream$$anonfun$transform$1$$anonfun$apply$21,
name: cleanedF$2, type: interface scala.Function1)
- object (class
org.apache.spark.streaming.dstream.DStream$$anonfun$transform$1$$anonfun$apply$21,
<function2>)
- field (class:
org.apache.spark.streaming.dstream.DStream$$anonfun$transform$2$$anonfun$5,
name: cleanedF$3, type: interface scala.Function2)
- object (class
org.apache.spark.streaming.dstream.DStream$$anonfun$transform$2$$anonfun$5,
<function2>)
- field (class: org.apache.spark.streaming.dstream.TransformedDStream, name:
transformFunc, type: interface scala.Function2)
- object (class org.apache.spark.streaming.dstream.TransformedDStream,
org.apache.spark.streaming.dstream.TransformedDStream@3ea9e1e5)
- writeObject data (class:
org.apache.spark.streaming.dstream.DStreamCheckpointData)
- object (class org.apache.spark.streaming.dstream.DStreamCheckpointData, [
0 checkpoint files
])
- writeObject data (class: org.apache.spark.streaming.dstream.DStream)
- object (class org.apache.spark.streaming.dstream.InternalMapWithStateDStream,
org.apache.spark.streaming.dstream.InternalMapWithStateDStream@23ab764d)
- writeObject data (class:
org.apache.spark.streaming.dstream.DStreamCheckpointData)
- object (class org.apache.spark.streaming.dstream.DStreamCheckpointData, [
0 checkpoint files
])
- writeObject data (class: org.apache.spark.streaming.dstream.DStream)
- object (class org.apache.spark.streaming.dstream.FilteredDStream,
org.apache.spark.streaming.dstream.FilteredDStream@5bbb0240)
- writeObject data (class:
org.apache.spark.streaming.dstream.DStreamCheckpointData)
- object (class org.apache.spark.streaming.dstream.DStreamCheckpointData, [
0 checkpoint files
])
- writeObject data (class: org.apache.spark.streaming.dstream.DStream)
- object (class org.apache.spark.streaming.dstream.MapWithStateDStreamImpl,
org.apache.spark.streaming.dstream.MapWithStateDStreamImpl@24211bca)
- writeObject data (class:
org.apache.spark.streaming.dstream.DStreamCheckpointData)
- object (class org.apache.spark.streaming.dstream.DStreamCheckpointData, [
0 checkpoint files
...
....
if only one main output, program works OK
can you tell me why?