Hi Hao

I tried to reproduce the issue and able to repro it, I am running drill-1.0.0 
in embedded mode with a small data set on my mac machine.

for the bad sql I am getting calcite cannotplanexception (same as the error 
stack), for a good sql find below the explain plan.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------+
| 00-00    Screen : rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, 
VARCHAR(1) c4_desc, INTEGER a_value): rowcount = 1.0, cumulative cost = {15.1 
rows, 129.1 cpu, 0.0 io, 0.0 network, 187.2 memory}, id = 1346
00-01      Project(c_id=[$0], c_desc=[$1], c4_desc=[$2], a_value=[$3]) : 
rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, VARCHAR(1) c4_desc, 
INTEGER a_value): rowcount = 1.0, cumulative cost = {15.0 rows, 129.0 cpu, 0.0 
io, 0.0 network, 187.2 memory}, id = 1345
00-02        HashAgg(group=[{0}], c_desc=[MAX($1)], c4_desc=[MAX($2)], 
a_value=[SUM($3)]) : rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, 
VARCHAR(1) c4_desc, INTEGER a_value): rowcount = 1.0, cumulative cost = {15.0 
rows, 129.0 cpu, 0.0 io, 0.0 network, 187.2 memory}, id = 1344
00-03          Project(c_id=[$8], c_desc=[$1], c4_desc=[$3], a_value=[$10]) : 
rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, VARCHAR(1) c4_desc, 
INTEGER a_value): rowcount = 1.0, cumulative cost = {14.0 rows, 85.0 cpu, 0.0 
io, 0.0 network, 169.6 memory}, id = 1343
00-04            HashJoin(condition=[=($8, $0)], joinType=[inner]) : rowType = 
RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id, VARCHAR(1) c4_desc, 
INTEGER c3_id, INTEGER c2_id, INTEGER c1_id, INTEGER b_id, INTEGER c_id0, DATE 
a_date, INTEGER a_value): rowcount = 1.0, cumulative cost = {14.0 rows, 85.0 
cpu, 0.0 io, 0.0 network, 169.6 memory}, id = 1342
00-05              Project(b_id=[$0], c_id0=[$1], a_date=[$2], a_value=[$3]) : 
rowType = RecordType(INTEGER b_id, INTEGER c_id0, DATE a_date, INTEGER 
a_value): rowcount = 1.0, cumulative cost = {8.0 rows, 35.0 cpu, 0.0 io, 0.0 
network, 96.0 memory}, id = 1341
00-07                SelectionVectorRemover : rowType = RecordType(INTEGER 
b_id, INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative 
cost = {8.0 rows, 35.0 cpu, 0.0 io, 0.0 network, 96.0 memory}, id = 1340
00-09                  Sort(sort0=[$0], sort1=[$1], sort2=[$2], dir0=[ASC], 
dir1=[ASC], dir2=[ASC]) : rowType = RecordType(INTEGER b_id, INTEGER c_id, DATE 
a_date, INTEGER a_value): rowcount = 1.0, cumulative cost = {7.0 rows, 34.0 
cpu, 0.0 io, 0.0 network, 96.0 memory}, id = 1339
00-11                    SelectionVectorRemover : rowType = RecordType(INTEGER 
b_id, INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative 
cost = {6.0 rows, 34.0 cpu, 0.0 io, 0.0 network, 64.0 memory}, id = 1338
00-13                      Sort(sort0=[$0], sort1=[$1], sort2=[$2], dir0=[ASC], 
dir1=[ASC], dir2=[ASC]) : rowType = RecordType(INTEGER b_id, INTEGER c_id, DATE 
a_date, INTEGER a_value): rowcount = 1.0, cumulative cost = {5.0 rows, 33.0 
cpu, 0.0 io, 0.0 network, 64.0 memory}, id = 1337
00-14                        StreamAgg(group=[{0, 1, 2, 3}]) : rowType = 
RecordType(INTEGER b_id, INTEGER c_id, DATE a_date, INTEGER a_value): rowcount 
= 1.0, cumulative cost = {4.0 rows, 33.0 cpu, 0.0 io, 0.0 network, 32.0 
memory}, id = 1336
00-15                          Sort(sort0=[$0], sort1=[$1], sort2=[$2], 
sort3=[$3], dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC]) : rowType = 
RecordType(INTEGER b_id, INTEGER c_id, DATE a_date, INTEGER a_value): rowcount 
= 1.0, cumulative cost = {3.0 rows, 17.0 cpu, 0.0 io, 0.0 network, 32.0 
memory}, id = 1335
00-16                            Project(b_id=[CAST(ITEM($0, 0)):INTEGER], 
c_id=[CAST(ITEM($0, 1)):INTEGER], a_date=[CAST(ITEM($0, 2)):DATE], 
a_value=[CAST(ITEM($0, 3)):INTEGER]) : rowType = RecordType(INTEGER b_id, 
INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative cost = 
{2.0 rows, 17.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1334
00-17                              Scan(groupscan=[EasyGroupScan 
[selectionRoot=/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv,
 numFiles=1, columns=[`columns`[0], `columns`[1], `columns`[2], `columns`[3]], 
files=[file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv]]])
 : rowType = RecordType(ANY columns): rowcount = 1.0, cumulative cost = {1.0 
rows, 1.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1333
00-06              SelectionVectorRemover : rowType = RecordType(INTEGER c_id, 
VARCHAR(1) c_desc, INTEGER c4_id, VARCHAR(1) c4_desc, INTEGER c3_id, INTEGER 
c2_id, INTEGER c1_id): rowcount = 1.0, cumulative cost = {4.0 rows, 30.0 cpu, 
0.0 io, 0.0 network, 56.0 memory}, id = 1332
00-08                Sort(sort0=[$0], sort1=[$2], sort2=[$4], sort3=[$5], 
sort4=[$6], dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC], dir4=[ASC]) : 
rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id, VARCHAR(1) 
c4_desc, INTEGER c3_id, INTEGER c2_id, INTEGER c1_id): rowcount = 1.0, 
cumulative cost = {3.0 rows, 29.0 cpu, 0.0 io, 0.0 network, 56.0 memory}, id = 
1331
00-10                  Project(c_id=[CAST(ITEM($0, 1)):INTEGER], 
c_desc=[CAST(ITEM($0, 12)):VARCHAR(1) CHARACTER SET "ISO-8859-1" COLLATE 
"ISO-8859-1$en_US$primary"], c4_id=[CAST(ITEM($0, 11)):INTEGER], 
c4_desc=[CAST(ITEM($0, 10)):VARCHAR(1) CHARACTER SET "ISO-8859-1" COLLATE 
"ISO-8859-1$en_US$primary"], c3_id=[CAST(ITEM($0, 9)):INTEGER], 
c2_id=[CAST(ITEM($0, 7)):INTEGER], c1_id=[CAST(ITEM($0, 5)):INTEGER]) : rowType 
= RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id, VARCHAR(1) 
c4_desc, INTEGER c3_id, INTEGER c2_id, INTEGER c1_id): rowcount = 1.0, 
cumulative cost = {2.0 rows, 29.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 
1330
00-12                    Scan(groupscan=[EasyGroupScan 
[selectionRoot=/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv,
 numFiles=1, columns=[`columns`[1], `columns`[12], `columns`[11], 
`columns`[10], `columns`[9], `columns`[7], `columns`[5]], 
files=[file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv]]])
 : rowType = RecordType(ANY columns): rowcount = 1.0, cumulative cost = {1.0 
rows, 1.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1329
 | {
  "head" : {
    "version" : 1,
    "generator" : {
      "type" : "ExplainHandler",
      "info" : ""
    },
    "type" : "APACHE_DRILL_PHYSICAL",
    "options" : [ ],
    "queue" : 0,
    "resultMode" : "EXEC"
  },
  "graph" : [ {
    "pop" : "fs-scan",
    "@id" : 12,
    "userName" : "rsingh",
    "files" : [ 
"file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv" ],
    "storage" : {
      "type" : "file",
      "enabled" : true,
      "connection" : "file:///",
      "workspaces" : {
        "root" : {
          "location" : "/",
          "writable" : false,
          "defaultInputFormat" : null
        },
        "tmp" : {
          "location" : "/tmp",
          "writable" : true,
          "defaultInputFormat" : null
        }
      },
      "formats" : {
        "psv" : {
          "type" : "text",
          "extensions" : [ "tbl" ],
          "delimiter" : "|"
        },
        "csv" : {
          "type" : "text",
          "extensions" : [ "csv" ],
          "delimiter" : ","
        },
        "tsv" : {
          "type" : "text",
          "extensions" : [ "tsv" ],
          "delimiter" : "\t"
        },
        "parquet" : {
          "type" : "parquet"
        },
        "json" : {
          "type" : "json"
        },
        "avro" : {
          "type" : "avro"
        }
      }
    },
    "format" : {
      "type" : "text",
      "extensions" : [ "csv" ],
      "delimiter" : ","
    },
    "columns" : [ "`columns`[1]", "`columns`[12]", "`columns`[11]", 
"`columns`[10]", "`columns`[9]", "`columns`[7]", "`columns`[5]" ],
    "selectionRoot" : 
"/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv",
    "cost" : 1.0
  }, {
    "pop" : "project",
    "@id" : 10,
    "exprs" : [ {
      "ref" : "`c_id`",
      "expr" : "cast( (`columns`[1] ) as INT )"
    }, {
      "ref" : "`c_desc`",
      "expr" : "cast( (`columns`[12] ) as VARCHAR(1) )"
    }, {
      "ref" : "`c4_id`",
      "expr" : "cast( (`columns`[11] ) as INT )"
    }, {
      "ref" : "`c4_desc`",
      "expr" : "cast( (`columns`[10] ) as VARCHAR(1) )"
    }, {
      "ref" : "`c3_id`",
      "expr" : "cast( (`columns`[9] ) as INT )"
    }, {
      "ref" : "`c2_id`",
      "expr" : "cast( (`columns`[7] ) as INT )"
    }, {
      "ref" : "`c1_id`",
      "expr" : "cast( (`columns`[5] ) as INT )"
    } ],
    "child" : 12,
    "initialAllocation" : 1000000,
    "maxAllocation" : 10000000000,
    "cost" : 1.0
  }, {
    "pop" : "external-sort",
    "@id" : 8,
    "child" : 10,
    "orderings" : [ {
      "expr" : "`c_id`",
      "order" : "ASC",
      "nullDirection" : "UNSPECIFIED"
    }, {
      "expr" : "`c4_id`",
      "order" : "ASC",
      "nullDirection" : "UNSPECIFIED"
    }, {
      "expr" : "`c3_id`",
      "order" : "ASC",
      "nullDirection" : "UNSPECIFIED"
    }, {
      "expr" : "`c2_id`",
      "order" : "ASC",
      "nullDirection" : "UNSPECIFIED"
    }, {
      "expr" : "`c1_id`",
      "order" : "ASC",
      "nullDirection" : "UNSPECIFIED"
    } ],
    "reverse" : false,
    "initialAllocation" : 20000000,
    "maxAllocation" : 10000000000,
    "cost" : 1.0
  }, {
    "pop" : "selection-vector-remover",
    "@id" : 6,
    "child" : 8,
    "initialAllocation" : 1000000,
    "maxAllocation" : 10000000000,
    "cost" : 1.0
  }, {
    "pop" : "fs-scan",
    "@id" : 17,
    "userName" : "rsingh",
    "files" : [ 
"file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv" ],
    "storage" : {
      "type" : "file",
      "enabled" : true,
      "connection" : "file:///",
      "workspaces" : {
        "root" : {
          "location" : "/",
          "writable" : false,
          "defaultInputFormat" : null
        },
        "tmp" : {
          "location" : "/tmp",
          "writable" : true,
          "defaultInputFormat" : null
        }
      },
      "formats" : {
        "psv" : {
          "type" : "text",
          "extensions" : [ "tbl" ],
          "delimiter" : "|"
        },
        "csv" : {
          "type" : "text",
          "extensions" : [ "csv" ],
          "delimiter" : ","
        },
        "tsv" : {
 |
+-------------


Rajkumar Singh
MapR Technologies


> On Jun 20, 2015, at 9:07 PM, Hao Zhu <[email protected]> wrote:
> 
> Hello,
> 
> I tried to create the same data in my lab with Drill 1.0 on MapR 4.1,
> however both SQL works fine in my end:
> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> sum(a11.account_value) as sss from view_fact_account a11
> join view_dim_costcenter a12 on (a11.costcenter_id =
> a12.costcenter_id) group by a11.costcenter_id;
> +----------------+------------------+-----------------------+------+
> | costcenter_id  | costcenter_desc  | costcenter_name_desc  | sss  |
> +----------------+------------------+-----------------------+------+
> | 2              | a                | a                     | 3    |
> +----------------+------------------+-----------------------+------+
> 1 row selected (0.302 seconds)
> 
> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> sum(a11.account_value) as sss from view_dim_costcenter a12
> join view_fact_account a11 on (a11.costcenter_id =
> a12.costcenter_id) group by a11.costcenter_id;
> 
> +----------------+------------------+-----------------------+------+
> | costcenter_id  | costcenter_desc  | costcenter_name_desc  | sss  |
> +----------------+------------------+-----------------------+------+
> | 2              | a                | a                     | 3    |
> +----------------+------------------+-----------------------+------+
> 1 row selected (0.209 seconds)
> 
> To narrow down the issue, could you test something:
> 1. Is this issue only happening with user2? Do you have the same issue
> using user1 also?
> Just want to confirm if this issue is related to impersonation or
> permission.
> 
> 2. Is this issue only happening with the 582 rows table?
> I mean, if the 2 tables have fewer rows, can this issue reproduce?
> In my test, I only created 1 row.
> I just want to know if this issue is data driver or not.
> 
> 3. Could you attach the good SQL and bad SQL profiles, so that the SQL plan
> is more readable?
> 
> Thanks,
> Hao
> 
> On Thu, Jun 18, 2015 at 6:46 AM, Mustafa Engin Sözer <
> [email protected]> wrote:
> 
>> Hi everyone,
>> 
>> I've had an earlier topic regarding this issue but no resolution came out
>> of this and it couldn't be reproduced. Let me re-describe the issue and my
>> cluster:
>> 
>> Currently I have a 5-node Mapr cluster on AWS, including Drill. On both
>> sides, the security is enabled and on drill, impersonation is also enabled.
>> The only other configuration I changed in drill was the new views
>> permissions which I set to 750. I'm using maprfs and our MapR version is
>> 4.1.0 and Drill version is 1.0.0.
>> 
>> So the process goes like this:
>> 
>> I have two users involved in this process, called usr1 and usr2. usr1 is
>> kind of an admin for the raw data whereas usr2 is not allowed to access to
>> raw data.
>> 
>> usr1 writes 3 csv files to /raw/costcenter volume and creates a relational
>> model using drill views. These views are written to /views/costcenter where
>> usr2 has access to. So usr2 can query these views without any issues.
>> 
>> So there comes the problem. Along with several other tables, I have 2
>> views, namely fact_account and dim_costcenter (created out of the same csv)
>> Here are the table definitions:
>> 
>> describe dfs.views_costcenter.fact_account;
>> +----------------+------------+--------------+
>> |  COLUMN_NAME   | DATA_TYPE  | IS_NULLABLE  |
>> +----------------+------------+--------------+
>> | account_id     | INTEGER    | YES          |
>> | costcenter_id  | INTEGER    | YES          |
>> | account_date   | DATE       | YES          |
>> | account_value  | INTEGER    | YES          |
>> +----------------+------------+--------------+
>> 
>> describe dfs.views_costcenter.dim_costcenter;
>> +-----------------------+------------+--------------+
>> |      COLUMN_NAME      | DATA_TYPE  | IS_NULLABLE  |
>> +-----------------------+------------+--------------+
>> | costcenter_id         | INTEGER    | YES          |
>> | costcenter_desc       | VARCHAR    | YES          |
>> | costcenter_name_id    | INTEGER    | YES          |
>> | costcenter_name_desc  | VARCHAR    | YES          |
>> | department_id         | INTEGER    | YES          |
>> | division_id           | INTEGER    | YES          |
>> | area_id               | INTEGER    | YES          |
>> +-----------------------+------------+--------------+
>> 
>> Both tables have 582 rows.
>> 
>> So I need to join these two tables and run some aggregations on them in
>> order to create a report. I have the following query:
>> 
>> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
>> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
>> sum(a11.account_value) as sss from dfs.views_costcenter.fact_account a11
>> join dfs.views_costcenter.dim_costcenter a12 on (a11.costcenter_id =
>> a12.costcenter_id) group by a11.costcenter_id;
>> 
>> When I run this query, the execution planner throws a huge exception as you
>> can see below. However, I've found a strange solution to that. If I
>> exchange the order of the tables within the join, ie.
>> 
>> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
>> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
>> sum(a11.account_value) as sss from dfs.views_costcenter.dim_costcenter a12
>> join dfs.views_costcenter.fact_account a11 on (a11.costcenter_id =
>> a12.costcenter_id) group by a11.costcenter_id;
>> 
>> It works perfectly. So in summary, if I write t2 join t1 instead of t1 join
>> t2 and change nothing else, it works like a charm. As inner join is
>> commutative and associative, this was completely unexpected for me. Can
>> someone confirm if this is a bug? I didn't want to file a bug to JIRA
>> before asking you guys here first.
>> 
>> Thanks in advance for your help.
>> 
>> Below you can find the exception: (as the exception is huge, I've only
>> posted part of it here. Please let me know if you need the complete
>> exception)
>> 
>> 
>> Error: SYSTEM ERROR:
>> org.apache.calcite.plan.RelOptPlanner$CannotPlanException: Node
>> [rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]] could not be implemented;
>> planner state:
>> 
>> Root: rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]
>> Original rel:
>> AbstractConverter(subset=[rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]],
>> convention=[PHYSICAL], DrillDistributionTraitDef=[SINGLETON([])],
>> sort=[[]]): rowcount = 101.8, cumulative cost = {inf}, id = 15148
>>  DrillScreenRel(subset=[rel#15145:Subset#27.LOGICAL.ANY([]).[]]): rowcount
>> = 101.8, cumulative cost = {10.18 rows, 10.18 cpu, 0.0 io, 0.0 network, 0.0
>> memory}, id = 15144
>>    DrillAggregateRel(subset=[rel#15143:Subset#26.LOGICAL.ANY([]).[]],
>> group=[{0}], costcenter_desc=[MAX($1)], costcenter_name_desc=[MAX($2)],
>> sss=[SUM($3)]): rowcount = 101.8, cumulative cost = {1.0 rows, 1.0 cpu, 0.0
>> io, 0.0 network, 0.0 memory}, id = 15142
>>      DrillProjectRel(subset=[rel#15141:Subset#25.LOGICAL.ANY([]).[]],
>> costcenter_id=[$1], costcenter_desc=[$5], costcenter_name_desc=[$7],
>> account_value=[$3]): rowcount = 1018.0, cumulative cost = {0.0 rows, 0.0
>> cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15140
>>        DrillProjectRel(subset=[rel#15139:Subset#24.LOGICAL.ANY([]).[0, 2,
>> 4, 5, 6]], account_id=[$7], costcenter_id=[$8], account_date=[$9],
>> account_value=[$10], costcenter_id0=[$0], costcenter_desc=[$1],
>> costcenter_name_id=[$2], costcenter_name_desc=[$3], department_id=[$4],
>> division_id=[$5], area_id=[$6]): rowcount = 1018.0, cumulative cost = {0.0
>> rows, 0.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15138
>>          DrillJoinRel(subset=[rel#15137:Subset#23.LOGICAL.ANY([]).[0, 2,
>> 4, 5, 6]], condition=[=($8, $0)], joinType=[inner]): rowcount = 1018.0,
>> cumulative cost = {1119.8 rows, 13030.4 cpu, 0.0 io, 0.0 network, 1791.68
>> memory}, id = 15136
>>            DrillSortRel(subset=[rel#15128:Subset#18.LOGICAL.ANY([]).[0, 2,
>> 4, 5, 6]], sort0=[$0], sort1=[$2], sort2=[$4], sort3=[$5], sort4=[$6],
>> dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC], dir4=[ASC]): rowcount =
>> 1018.0, cumulative cost = {197407.16549843678 rows, 1018.0 cpu, 0.0 io, 0.0
>> network, 0.0 memory}, id = 15127
>> 
>> DrillProjectRel(subset=[rel#15126:Subset#17.LOGICAL.ANY([]).[]],
>> costcenter_id=[CAST(ITEM($0, 1)):INTEGER], costcenter_desc=[CAST(ITEM($0,
>> 12)):VARCHAR(45) CHARACTER SET "ISO-8859-1" COLLATE
>> "ISO-8859-1$en_US$primary"], costcenter_name_id=[CAST(ITEM($0,
>> 11)):INTEGER], costcenter_name_desc=[CAST(ITEM($0, 10)):VARCHAR(45)
>> CHARACTER SET "ISO-8859-1" COLLATE "ISO-8859-1$en_US$primary"],
>> department_id=[CAST(ITEM($0, 9)):INTEGER], division_id=[CAST(ITEM($0,
>> 7)):INTEGER], area_id=[CAST(ITEM($0, 5)):INTEGER]): rowcount = 1018.0,
>> cumulative cost = {1018.0 rows, 28504.0 cpu, 0.0 io, 0.0 network, 0.0
>> memory}, id = 15125
>> 
>> DrillScanRel(subset=[rel#15124:Subset#16.LOGICAL.ANY([]).[]], table=[[dfs,
>> raw_costcenter, master_datev*.csv]], groupscan=[EasyGroupScan
>> [selectionRoot=/raw/costcenter/master_datev*.csv, numFiles=1,
>> columns=[`columns`[1], `columns`[12], `columns`[11], `columns`[10],
>> `columns`[9], `columns`[7], `columns`[5]],
>> files=[maprfs:/raw/costcenter/master_datev_20150617.csv]]]): rowcount =
>> 1018.0, cumulative cost = {1018.0 rows, 1018.0 cpu, 0.0 io, 0.0 network,
>> 0.0 memory}, id = 15064
>>            DrillSortRel(subset=[rel#15135:Subset#22.LOGICAL.ANY([]).[0, 1,
>> 2]], sort0=[$0], sort1=[$1], sort2=[$2], dir0=[ASC], dir1=[ASC],
>> dir2=[ASC]): rowcount = 101.8, cumulative cost = {7529.958857584828 rows,
>> 101.8 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15134
>> 
>> DrillAggregateRel(subset=[rel#15133:Subset#21.LOGICAL.ANY([]).[]],
>> group=[{0, 1, 2, 3}]): rowcount = 101.8, cumulative cost = {1.0 rows, 1.0
>> cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15132
>> 
>> DrillProjectRel(subset=[rel#15131:Subset#20.LOGICAL.ANY([]).[]],
>> account_id=[CAST(ITEM($0, 0)):INTEGER], costcenter_id=[CAST(ITEM($0,
>> 1)):INTEGER], account_date=[CAST(ITEM($0, 2)):DATE],
>> account_value=[CAST(ITEM($0, 3)):INTEGER]): rowcount = 1018.0, cumulative
>> cost = {1018.0 rows, 16288.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id =
>> 15130
>> 
>> DrillScanRel(subset=[rel#15129:Subset#19.LOGICAL.ANY([]).[]], table=[[dfs,
>> raw_costcenter, master_datev*.csv]], groupscan=[EasyGroupScan
>> [selectionRoot=/raw/costcenter/master_datev*.csv, numFiles=1,
>> columns=[`columns`[0], `columns`[1], `columns`[2], `columns`[3]],
>> files=[maprfs:/raw/costcenter/master_datev_20150617.csv]]]): rowcount =
>> 1018.0, cumulative cost = {1018.0 rows, 1018.0 cpu, 0.0 io, 0.0 network,
>> 0.0 memory}, id = 15074
>> 
>> Sets:
>> Set#16, type: RecordType(ANY columns)
>> rel#15124:Subset#16.LOGICAL.ANY([]).[], best=rel#15064,
>> importance=0.4304672100000001
>> 
>> 
>> --
>> 
>> *M. Engin Sözer*
>> Junior Datawarehouse Manager
>> [email protected]
>> 
>> Goodgame Studios
>> Theodorstr. 42-90, House 9
>> 22761 Hamburg, Germany
>> Phone: +49 (0)40 219 880 -0
>> *www.goodgamestudios.com <http://www.goodgamestudios.com>*
>> 
>> Goodgame Studios is a branch of Altigi GmbH
>> Altigi GmbH, District court Hamburg, HRB 99869
>> Board of directors: Dr. Kai Wawrzinek, Dr. Christian Wawrzinek, Fabian
>> Ritter
>> 

Reply via email to