Pls go ahead and file a JIRA with the reproducible test case.

Aman

On Sat, Jun 20, 2015 at 9:31 AM, Rajkumar Singh <[email protected]> wrote:

> Hi Hao
>
> I tried to reproduce the issue and able to repro it, I am running
> drill-1.0.0 in embedded mode with a small data set on my mac machine.
>
> for the bad sql I am getting calcite cannotplanexception (same as the
> error stack), for a good sql find below the explain plan.
>
>
> -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------+
> | 00-00    Screen : rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc,
> VARCHAR(1) c4_desc, INTEGER a_value): rowcount = 1.0, cumulative cost =
> {15.1 rows, 129.1 cpu, 0.0 io, 0.0 network, 187.2 memory}, id = 1346
> 00-01      Project(c_id=[$0], c_desc=[$1], c4_desc=[$2], a_value=[$3]) :
> rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, VARCHAR(1) c4_desc,
> INTEGER a_value): rowcount = 1.0, cumulative cost = {15.0 rows, 129.0 cpu,
> 0.0 io, 0.0 network, 187.2 memory}, id = 1345
> 00-02        HashAgg(group=[{0}], c_desc=[MAX($1)], c4_desc=[MAX($2)],
> a_value=[SUM($3)]) : rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc,
> VARCHAR(1) c4_desc, INTEGER a_value): rowcount = 1.0, cumulative cost =
> {15.0 rows, 129.0 cpu, 0.0 io, 0.0 network, 187.2 memory}, id = 1344
> 00-03          Project(c_id=[$8], c_desc=[$1], c4_desc=[$3],
> a_value=[$10]) : rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc,
> VARCHAR(1) c4_desc, INTEGER a_value): rowcount = 1.0, cumulative cost =
> {14.0 rows, 85.0 cpu, 0.0 io, 0.0 network, 169.6 memory}, id = 1343
> 00-04            HashJoin(condition=[=($8, $0)], joinType=[inner]) :
> rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id,
> VARCHAR(1) c4_desc, INTEGER c3_id, INTEGER c2_id, INTEGER c1_id, INTEGER
> b_id, INTEGER c_id0, DATE a_date, INTEGER a_value): rowcount = 1.0,
> cumulative cost = {14.0 rows, 85.0 cpu, 0.0 io, 0.0 network, 169.6 memory},
> id = 1342
> 00-05              Project(b_id=[$0], c_id0=[$1], a_date=[$2],
> a_value=[$3]) : rowType = RecordType(INTEGER b_id, INTEGER c_id0, DATE
> a_date, INTEGER a_value): rowcount = 1.0, cumulative cost = {8.0 rows, 35.0
> cpu, 0.0 io, 0.0 network, 96.0 memory}, id = 1341
> 00-07                SelectionVectorRemover : rowType = RecordType(INTEGER
> b_id, INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0,
> cumulative cost = {8.0 rows, 35.0 cpu, 0.0 io, 0.0 network, 96.0 memory},
> id = 1340
> 00-09                  Sort(sort0=[$0], sort1=[$1], sort2=[$2],
> dir0=[ASC], dir1=[ASC], dir2=[ASC]) : rowType = RecordType(INTEGER b_id,
> INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative
> cost = {7.0 rows, 34.0 cpu, 0.0 io, 0.0 network, 96.0 memory}, id = 1339
> 00-11                    SelectionVectorRemover : rowType =
> RecordType(INTEGER b_id, INTEGER c_id, DATE a_date, INTEGER a_value):
> rowcount = 1.0, cumulative cost = {6.0 rows, 34.0 cpu, 0.0 io, 0.0 network,
> 64.0 memory}, id = 1338
> 00-13                      Sort(sort0=[$0], sort1=[$1], sort2=[$2],
> dir0=[ASC], dir1=[ASC], dir2=[ASC]) : rowType = RecordType(INTEGER b_id,
> INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative
> cost = {5.0 rows, 33.0 cpu, 0.0 io, 0.0 network, 64.0 memory}, id = 1337
> 00-14                        StreamAgg(group=[{0, 1, 2, 3}]) : rowType =
> RecordType(INTEGER b_id, INTEGER c_id, DATE a_date, INTEGER a_value):
> rowcount = 1.0, cumulative cost = {4.0 rows, 33.0 cpu, 0.0 io, 0.0 network,
> 32.0 memory}, id = 1336
> 00-15                          Sort(sort0=[$0], sort1=[$1], sort2=[$2],
> sort3=[$3], dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC]) : rowType =
> RecordType(INTEGER b_id, INTEGER c_id, DATE a_date, INTEGER a_value):
> rowcount = 1.0, cumulative cost = {3.0 rows, 17.0 cpu, 0.0 io, 0.0 network,
> 32.0 memory}, id = 1335
> 00-16                            Project(b_id=[CAST(ITEM($0, 0)):INTEGER],
> c_id=[CAST(ITEM($0, 1)):INTEGER], a_date=[CAST(ITEM($0, 2)):DATE],
> a_value=[CAST(ITEM($0, 3)):INTEGER]) : rowType = RecordType(INTEGER b_id,
> INTEGER c_id, DATE a_date, INTEGER a_value): rowcount = 1.0, cumulative
> cost = {2.0 rows, 17.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1334
> 00-17                              Scan(groupscan=[EasyGroupScan
> [selectionRoot=/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv,
> numFiles=1, columns=[`columns`[0], `columns`[1], `columns`[2],
> `columns`[3]],
> files=[file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv]]])
> : rowType = RecordType(ANY columns): rowcount = 1.0, cumulative cost = {1.0
> rows, 1.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1333
> 00-06              SelectionVectorRemover : rowType = RecordType(INTEGER
> c_id, VARCHAR(1) c_desc, INTEGER c4_id, VARCHAR(1) c4_desc, INTEGER c3_id,
> INTEGER c2_id, INTEGER c1_id): rowcount = 1.0, cumulative cost = {4.0 rows,
> 30.0 cpu, 0.0 io, 0.0 network, 56.0 memory}, id = 1332
> 00-08                Sort(sort0=[$0], sort1=[$2], sort2=[$4], sort3=[$5],
> sort4=[$6], dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC], dir4=[ASC]) :
> rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id,
> VARCHAR(1) c4_desc, INTEGER c3_id, INTEGER c2_id, INTEGER c1_id): rowcount
> = 1.0, cumulative cost = {3.0 rows, 29.0 cpu, 0.0 io, 0.0 network, 56.0
> memory}, id = 1331
> 00-10                  Project(c_id=[CAST(ITEM($0, 1)):INTEGER],
> c_desc=[CAST(ITEM($0, 12)):VARCHAR(1) CHARACTER SET "ISO-8859-1" COLLATE
> "ISO-8859-1$en_US$primary"], c4_id=[CAST(ITEM($0, 11)):INTEGER],
> c4_desc=[CAST(ITEM($0, 10)):VARCHAR(1) CHARACTER SET "ISO-8859-1" COLLATE
> "ISO-8859-1$en_US$primary"], c3_id=[CAST(ITEM($0, 9)):INTEGER],
> c2_id=[CAST(ITEM($0, 7)):INTEGER], c1_id=[CAST(ITEM($0, 5)):INTEGER]) :
> rowType = RecordType(INTEGER c_id, VARCHAR(1) c_desc, INTEGER c4_id,
> VARCHAR(1) c4_desc, INTEGER c3_id, INTEGER c2_id, INTEGER c1_id): rowcount
> = 1.0, cumulative cost = {2.0 rows, 29.0 cpu, 0.0 io, 0.0 network, 0.0
> memory}, id = 1330
> 00-12                    Scan(groupscan=[EasyGroupScan
> [selectionRoot=/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv,
> numFiles=1, columns=[`columns`[1], `columns`[12], `columns`[11],
> `columns`[10], `columns`[9], `columns`[7], `columns`[5]],
> files=[file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv]]])
> : rowType = RecordType(ANY columns): rowcount = 1.0, cumulative cost = {1.0
> rows, 1.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 1329
>  | {
>   "head" : {
>     "version" : 1,
>     "generator" : {
>       "type" : "ExplainHandler",
>       "info" : ""
>     },
>     "type" : "APACHE_DRILL_PHYSICAL",
>     "options" : [ ],
>     "queue" : 0,
>     "resultMode" : "EXEC"
>   },
>   "graph" : [ {
>     "pop" : "fs-scan",
>     "@id" : 12,
>     "userName" : "rsingh",
>     "files" : [
> "file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv"
> ],
>     "storage" : {
>       "type" : "file",
>       "enabled" : true,
>       "connection" : "file:///",
>       "workspaces" : {
>         "root" : {
>           "location" : "/",
>           "writable" : false,
>           "defaultInputFormat" : null
>         },
>         "tmp" : {
>           "location" : "/tmp",
>           "writable" : true,
>           "defaultInputFormat" : null
>         }
>       },
>       "formats" : {
>         "psv" : {
>           "type" : "text",
>           "extensions" : [ "tbl" ],
>           "delimiter" : "|"
>         },
>         "csv" : {
>           "type" : "text",
>           "extensions" : [ "csv" ],
>           "delimiter" : ","
>         },
>         "tsv" : {
>           "type" : "text",
>           "extensions" : [ "tsv" ],
>           "delimiter" : "\t"
>         },
>         "parquet" : {
>           "type" : "parquet"
>         },
>         "json" : {
>           "type" : "json"
>         },
>         "avro" : {
>           "type" : "avro"
>         }
>       }
>     },
>     "format" : {
>       "type" : "text",
>       "extensions" : [ "csv" ],
>       "delimiter" : ","
>     },
>     "columns" : [ "`columns`[1]", "`columns`[12]", "`columns`[11]",
> "`columns`[10]", "`columns`[9]", "`columns`[7]", "`columns`[5]" ],
>     "selectionRoot" :
> "/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv",
>     "cost" : 1.0
>   }, {
>     "pop" : "project",
>     "@id" : 10,
>     "exprs" : [ {
>       "ref" : "`c_id`",
>       "expr" : "cast( (`columns`[1] ) as INT )"
>     }, {
>       "ref" : "`c_desc`",
>       "expr" : "cast( (`columns`[12] ) as VARCHAR(1) )"
>     }, {
>       "ref" : "`c4_id`",
>       "expr" : "cast( (`columns`[11] ) as INT )"
>     }, {
>       "ref" : "`c4_desc`",
>       "expr" : "cast( (`columns`[10] ) as VARCHAR(1) )"
>     }, {
>       "ref" : "`c3_id`",
>       "expr" : "cast( (`columns`[9] ) as INT )"
>     }, {
>       "ref" : "`c2_id`",
>       "expr" : "cast( (`columns`[7] ) as INT )"
>     }, {
>       "ref" : "`c1_id`",
>       "expr" : "cast( (`columns`[5] ) as INT )"
>     } ],
>     "child" : 12,
>     "initialAllocation" : 1000000,
>     "maxAllocation" : 10000000000,
>     "cost" : 1.0
>   }, {
>     "pop" : "external-sort",
>     "@id" : 8,
>     "child" : 10,
>     "orderings" : [ {
>       "expr" : "`c_id`",
>       "order" : "ASC",
>       "nullDirection" : "UNSPECIFIED"
>     }, {
>       "expr" : "`c4_id`",
>       "order" : "ASC",
>       "nullDirection" : "UNSPECIFIED"
>     }, {
>       "expr" : "`c3_id`",
>       "order" : "ASC",
>       "nullDirection" : "UNSPECIFIED"
>     }, {
>       "expr" : "`c2_id`",
>       "order" : "ASC",
>       "nullDirection" : "UNSPECIFIED"
>     }, {
>       "expr" : "`c1_id`",
>       "order" : "ASC",
>       "nullDirection" : "UNSPECIFIED"
>     } ],
>     "reverse" : false,
>     "initialAllocation" : 20000000,
>     "maxAllocation" : 10000000000,
>     "cost" : 1.0
>   }, {
>     "pop" : "selection-vector-remover",
>     "@id" : 6,
>     "child" : 8,
>     "initialAllocation" : 1000000,
>     "maxAllocation" : 10000000000,
>     "cost" : 1.0
>   }, {
>     "pop" : "fs-scan",
>     "@id" : 17,
>     "userName" : "rsingh",
>     "files" : [
> "file:/Users/rsingh/Downloads/apache-drill-1.0.0/sample-data/master-data.csv"
> ],
>     "storage" : {
>       "type" : "file",
>       "enabled" : true,
>       "connection" : "file:///",
>       "workspaces" : {
>         "root" : {
>           "location" : "/",
>           "writable" : false,
>           "defaultInputFormat" : null
>         },
>         "tmp" : {
>           "location" : "/tmp",
>           "writable" : true,
>           "defaultInputFormat" : null
>         }
>       },
>       "formats" : {
>         "psv" : {
>           "type" : "text",
>           "extensions" : [ "tbl" ],
>           "delimiter" : "|"
>         },
>         "csv" : {
>           "type" : "text",
>           "extensions" : [ "csv" ],
>           "delimiter" : ","
>         },
>         "tsv" : {
>  |
> +-------------
>
>
> Rajkumar Singh
> MapR Technologies
>
>
> > On Jun 20, 2015, at 9:07 PM, Hao Zhu <[email protected]> wrote:
> >
> > Hello,
> >
> > I tried to create the same data in my lab with Drill 1.0 on MapR 4.1,
> > however both SQL works fine in my end:
> > select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> > costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> > sum(a11.account_value) as sss from view_fact_account a11
> > join view_dim_costcenter a12 on (a11.costcenter_id =
> > a12.costcenter_id) group by a11.costcenter_id;
> > +----------------+------------------+-----------------------+------+
> > | costcenter_id  | costcenter_desc  | costcenter_name_desc  | sss  |
> > +----------------+------------------+-----------------------+------+
> > | 2              | a                | a                     | 3    |
> > +----------------+------------------+-----------------------+------+
> > 1 row selected (0.302 seconds)
> >
> > select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> > costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> > sum(a11.account_value) as sss from view_dim_costcenter a12
> > join view_fact_account a11 on (a11.costcenter_id =
> > a12.costcenter_id) group by a11.costcenter_id;
> >
> > +----------------+------------------+-----------------------+------+
> > | costcenter_id  | costcenter_desc  | costcenter_name_desc  | sss  |
> > +----------------+------------------+-----------------------+------+
> > | 2              | a                | a                     | 3    |
> > +----------------+------------------+-----------------------+------+
> > 1 row selected (0.209 seconds)
> >
> > To narrow down the issue, could you test something:
> > 1. Is this issue only happening with user2? Do you have the same issue
> > using user1 also?
> > Just want to confirm if this issue is related to impersonation or
> > permission.
> >
> > 2. Is this issue only happening with the 582 rows table?
> > I mean, if the 2 tables have fewer rows, can this issue reproduce?
> > In my test, I only created 1 row.
> > I just want to know if this issue is data driver or not.
> >
> > 3. Could you attach the good SQL and bad SQL profiles, so that the SQL
> plan
> > is more readable?
> >
> > Thanks,
> > Hao
> >
> > On Thu, Jun 18, 2015 at 6:46 AM, Mustafa Engin Sözer <
> > [email protected]> wrote:
> >
> >> Hi everyone,
> >>
> >> I've had an earlier topic regarding this issue but no resolution came
> out
> >> of this and it couldn't be reproduced. Let me re-describe the issue and
> my
> >> cluster:
> >>
> >> Currently I have a 5-node Mapr cluster on AWS, including Drill. On both
> >> sides, the security is enabled and on drill, impersonation is also
> enabled.
> >> The only other configuration I changed in drill was the new views
> >> permissions which I set to 750. I'm using maprfs and our MapR version is
> >> 4.1.0 and Drill version is 1.0.0.
> >>
> >> So the process goes like this:
> >>
> >> I have two users involved in this process, called usr1 and usr2. usr1 is
> >> kind of an admin for the raw data whereas usr2 is not allowed to access
> to
> >> raw data.
> >>
> >> usr1 writes 3 csv files to /raw/costcenter volume and creates a
> relational
> >> model using drill views. These views are written to /views/costcenter
> where
> >> usr2 has access to. So usr2 can query these views without any issues.
> >>
> >> So there comes the problem. Along with several other tables, I have 2
> >> views, namely fact_account and dim_costcenter (created out of the same
> csv)
> >> Here are the table definitions:
> >>
> >> describe dfs.views_costcenter.fact_account;
> >> +----------------+------------+--------------+
> >> |  COLUMN_NAME   | DATA_TYPE  | IS_NULLABLE  |
> >> +----------------+------------+--------------+
> >> | account_id     | INTEGER    | YES          |
> >> | costcenter_id  | INTEGER    | YES          |
> >> | account_date   | DATE       | YES          |
> >> | account_value  | INTEGER    | YES          |
> >> +----------------+------------+--------------+
> >>
> >> describe dfs.views_costcenter.dim_costcenter;
> >> +-----------------------+------------+--------------+
> >> |      COLUMN_NAME      | DATA_TYPE  | IS_NULLABLE  |
> >> +-----------------------+------------+--------------+
> >> | costcenter_id         | INTEGER    | YES          |
> >> | costcenter_desc       | VARCHAR    | YES          |
> >> | costcenter_name_id    | INTEGER    | YES          |
> >> | costcenter_name_desc  | VARCHAR    | YES          |
> >> | department_id         | INTEGER    | YES          |
> >> | division_id           | INTEGER    | YES          |
> >> | area_id               | INTEGER    | YES          |
> >> +-----------------------+------------+--------------+
> >>
> >> Both tables have 582 rows.
> >>
> >> So I need to join these two tables and run some aggregations on them in
> >> order to create a report. I have the following query:
> >>
> >> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> >> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> >> sum(a11.account_value) as sss from dfs.views_costcenter.fact_account a11
> >> join dfs.views_costcenter.dim_costcenter a12 on (a11.costcenter_id =
> >> a12.costcenter_id) group by a11.costcenter_id;
> >>
> >> When I run this query, the execution planner throws a huge exception as
> you
> >> can see below. However, I've found a strange solution to that. If I
> >> exchange the order of the tables within the join, ie.
> >>
> >> select a11.costcenter_id as costcenter_id, max(a12.costcenter_desc) as
> >> costcenter_desc, max(a12.costcenter_name_desc) as costcenter_name_desc,
> >> sum(a11.account_value) as sss from dfs.views_costcenter.dim_costcenter
> a12
> >> join dfs.views_costcenter.fact_account a11 on (a11.costcenter_id =
> >> a12.costcenter_id) group by a11.costcenter_id;
> >>
> >> It works perfectly. So in summary, if I write t2 join t1 instead of t1
> join
> >> t2 and change nothing else, it works like a charm. As inner join is
> >> commutative and associative, this was completely unexpected for me. Can
> >> someone confirm if this is a bug? I didn't want to file a bug to JIRA
> >> before asking you guys here first.
> >>
> >> Thanks in advance for your help.
> >>
> >> Below you can find the exception: (as the exception is huge, I've only
> >> posted part of it here. Please let me know if you need the complete
> >> exception)
> >>
> >>
> >> Error: SYSTEM ERROR:
> >> org.apache.calcite.plan.RelOptPlanner$CannotPlanException: Node
> >> [rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]] could not be
> implemented;
> >> planner state:
> >>
> >> Root: rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]
> >> Original rel:
> >>
> AbstractConverter(subset=[rel#15146:Subset#27.PHYSICAL.SINGLETON([]).[]],
> >> convention=[PHYSICAL], DrillDistributionTraitDef=[SINGLETON([])],
> >> sort=[[]]): rowcount = 101.8, cumulative cost = {inf}, id = 15148
> >>  DrillScreenRel(subset=[rel#15145:Subset#27.LOGICAL.ANY([]).[]]):
> rowcount
> >> = 101.8, cumulative cost = {10.18 rows, 10.18 cpu, 0.0 io, 0.0 network,
> 0.0
> >> memory}, id = 15144
> >>    DrillAggregateRel(subset=[rel#15143:Subset#26.LOGICAL.ANY([]).[]],
> >> group=[{0}], costcenter_desc=[MAX($1)], costcenter_name_desc=[MAX($2)],
> >> sss=[SUM($3)]): rowcount = 101.8, cumulative cost = {1.0 rows, 1.0 cpu,
> 0.0
> >> io, 0.0 network, 0.0 memory}, id = 15142
> >>      DrillProjectRel(subset=[rel#15141:Subset#25.LOGICAL.ANY([]).[]],
> >> costcenter_id=[$1], costcenter_desc=[$5], costcenter_name_desc=[$7],
> >> account_value=[$3]): rowcount = 1018.0, cumulative cost = {0.0 rows, 0.0
> >> cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15140
> >>        DrillProjectRel(subset=[rel#15139:Subset#24.LOGICAL.ANY([]).[0,
> 2,
> >> 4, 5, 6]], account_id=[$7], costcenter_id=[$8], account_date=[$9],
> >> account_value=[$10], costcenter_id0=[$0], costcenter_desc=[$1],
> >> costcenter_name_id=[$2], costcenter_name_desc=[$3], department_id=[$4],
> >> division_id=[$5], area_id=[$6]): rowcount = 1018.0, cumulative cost =
> {0.0
> >> rows, 0.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15138
> >>          DrillJoinRel(subset=[rel#15137:Subset#23.LOGICAL.ANY([]).[0, 2,
> >> 4, 5, 6]], condition=[=($8, $0)], joinType=[inner]): rowcount = 1018.0,
> >> cumulative cost = {1119.8 rows, 13030.4 cpu, 0.0 io, 0.0 network,
> 1791.68
> >> memory}, id = 15136
> >>            DrillSortRel(subset=[rel#15128:Subset#18.LOGICAL.ANY([]).[0,
> 2,
> >> 4, 5, 6]], sort0=[$0], sort1=[$2], sort2=[$4], sort3=[$5], sort4=[$6],
> >> dir0=[ASC], dir1=[ASC], dir2=[ASC], dir3=[ASC], dir4=[ASC]): rowcount =
> >> 1018.0, cumulative cost = {197407.16549843678 rows, 1018.0 cpu, 0.0 io,
> 0.0
> >> network, 0.0 memory}, id = 15127
> >>
> >> DrillProjectRel(subset=[rel#15126:Subset#17.LOGICAL.ANY([]).[]],
> >> costcenter_id=[CAST(ITEM($0, 1)):INTEGER],
> costcenter_desc=[CAST(ITEM($0,
> >> 12)):VARCHAR(45) CHARACTER SET "ISO-8859-1" COLLATE
> >> "ISO-8859-1$en_US$primary"], costcenter_name_id=[CAST(ITEM($0,
> >> 11)):INTEGER], costcenter_name_desc=[CAST(ITEM($0, 10)):VARCHAR(45)
> >> CHARACTER SET "ISO-8859-1" COLLATE "ISO-8859-1$en_US$primary"],
> >> department_id=[CAST(ITEM($0, 9)):INTEGER], division_id=[CAST(ITEM($0,
> >> 7)):INTEGER], area_id=[CAST(ITEM($0, 5)):INTEGER]): rowcount = 1018.0,
> >> cumulative cost = {1018.0 rows, 28504.0 cpu, 0.0 io, 0.0 network, 0.0
> >> memory}, id = 15125
> >>
> >> DrillScanRel(subset=[rel#15124:Subset#16.LOGICAL.ANY([]).[]],
> table=[[dfs,
> >> raw_costcenter, master_datev*.csv]], groupscan=[EasyGroupScan
> >> [selectionRoot=/raw/costcenter/master_datev*.csv, numFiles=1,
> >> columns=[`columns`[1], `columns`[12], `columns`[11], `columns`[10],
> >> `columns`[9], `columns`[7], `columns`[5]],
> >> files=[maprfs:/raw/costcenter/master_datev_20150617.csv]]]): rowcount =
> >> 1018.0, cumulative cost = {1018.0 rows, 1018.0 cpu, 0.0 io, 0.0 network,
> >> 0.0 memory}, id = 15064
> >>            DrillSortRel(subset=[rel#15135:Subset#22.LOGICAL.ANY([]).[0,
> 1,
> >> 2]], sort0=[$0], sort1=[$1], sort2=[$2], dir0=[ASC], dir1=[ASC],
> >> dir2=[ASC]): rowcount = 101.8, cumulative cost = {7529.958857584828
> rows,
> >> 101.8 cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15134
> >>
> >> DrillAggregateRel(subset=[rel#15133:Subset#21.LOGICAL.ANY([]).[]],
> >> group=[{0, 1, 2, 3}]): rowcount = 101.8, cumulative cost = {1.0 rows,
> 1.0
> >> cpu, 0.0 io, 0.0 network, 0.0 memory}, id = 15132
> >>
> >> DrillProjectRel(subset=[rel#15131:Subset#20.LOGICAL.ANY([]).[]],
> >> account_id=[CAST(ITEM($0, 0)):INTEGER], costcenter_id=[CAST(ITEM($0,
> >> 1)):INTEGER], account_date=[CAST(ITEM($0, 2)):DATE],
> >> account_value=[CAST(ITEM($0, 3)):INTEGER]): rowcount = 1018.0,
> cumulative
> >> cost = {1018.0 rows, 16288.0 cpu, 0.0 io, 0.0 network, 0.0 memory}, id =
> >> 15130
> >>
> >> DrillScanRel(subset=[rel#15129:Subset#19.LOGICAL.ANY([]).[]],
> table=[[dfs,
> >> raw_costcenter, master_datev*.csv]], groupscan=[EasyGroupScan
> >> [selectionRoot=/raw/costcenter/master_datev*.csv, numFiles=1,
> >> columns=[`columns`[0], `columns`[1], `columns`[2], `columns`[3]],
> >> files=[maprfs:/raw/costcenter/master_datev_20150617.csv]]]): rowcount =
> >> 1018.0, cumulative cost = {1018.0 rows, 1018.0 cpu, 0.0 io, 0.0 network,
> >> 0.0 memory}, id = 15074
> >>
> >> Sets:
> >> Set#16, type: RecordType(ANY columns)
> >> rel#15124:Subset#16.LOGICAL.ANY([]).[], best=rel#15064,
> >> importance=0.4304672100000001
> >>
> >>
> >> --
> >>
> >> *M. Engin Sözer*
> >> Junior Datawarehouse Manager
> >> [email protected]
> >>
> >> Goodgame Studios
> >> Theodorstr. 42-90, House 9
> >> 22761 Hamburg, Germany
> >> Phone: +49 (0)40 219 880 -0
> >> *www.goodgamestudios.com <http://www.goodgamestudios.com>*
> >>
> >> Goodgame Studios is a branch of Altigi GmbH
> >> Altigi GmbH, District court Hamburg, HRB 99869
> >> Board of directors: Dr. Kai Wawrzinek, Dr. Christian Wawrzinek, Fabian
> >> Ritter
> >>
>
>

Reply via email to