each container gets 1GB at the moment.
can you try increasing memory per reducer  ?


On Wed, Oct 31, 2012 at 9:15 PM, Eduard Skaley <[email protected] <mailto:[email protected]>> wrote:

    Hello,

    I'm getting this Error through job execution:

    16:20:26 INFO  [main]                     Job -  map 100% reduce 46%
    16:20:27 INFO  [main]                     Job -  map 100% reduce 51%
    16:20:29 INFO  [main]                     Job -  map 100% reduce 62%
    16:20:30 INFO  [main]                     Job -  map 100% reduce 64%
    16:20:32 INFO  [main]                     Job - Task Id :
    attempt_1351680008718_0018_r_000006_0, Status : FAILED
    Error:
    org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError:
    error in shuffle in fetcher#2
        at
    org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:123)
        at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:371)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:152)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at
    
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1332)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:147)
    Caused by: java.lang.OutOfMemoryError: Java heap space
        at
    
org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:58)
        at
    
org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:45)
        at
    org.apache.hadoop.mapreduce.task.reduce.MapOutput.<init>(MapOutput.java:97)
        at
    
org.apache.hadoop.mapreduce.task.reduce.MergeManager.unconditionalReserve(MergeManager.java:286)
        at
    
org.apache.hadoop.mapreduce.task.reduce.MergeManager.reserve(MergeManager.java:276)
        at
    
org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:384)
        at
    
org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:319)
        at
    org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:179)

    16:20:33 INFO  [main]                     Job -  map 100% reduce 65%
    16:20:36 INFO  [main]                     Job -  map 100% reduce 67%
    16:20:39 INFO  [main]                     Job -  map 100% reduce 69%
    16:20:41 INFO  [main]                     Job -  map 100% reduce 70%
    16:20:43 INFO  [main]                     Job -  map 100% reduce 71%

    I have no clue what the issue could be for this. I googled this
    issue and checked several sources of possible solutions but
    nothing does fit.

    I saw this jira entry which could fit:
    https://issues.apache.org/jira/browse/MAPREDUCE-4655.

    Here somebody recommends to increase the value for the property
    dfs.datanode.max.xcievers / dfs.datanode.max.receiver.threads to
    4096, but this is the value for our cluster.
    
http://yaseminavcular.blogspot.de/2011/04/common-hadoop-hdfs-exceptions-with.html

    The issue with the to small input files doesn't fit I think,
    because the map phase reads 137 files with each 130MB. Block Size
    is 128MB.

    The cluster uses version 2.0.0-cdh4.1.1,
    581959ba23e4af85afd8db98b7687662fe9c5f20.

    Thx









--
Nitin Pawar


Reply via email to