We increased mapreduce.reduce.memory.mb to 2GB and
mapreduce.reduce.java.opts to 1.5GB.
Now we are getting livelocks for our jobs, map jobs don't start.
We are using CapacityScheduler because we had LiveLocks with FifoScheduler.
Does anybody have a clue ?
By the way it happens on Yarn not on MRv1
each container gets 1GB at the moment.
can you try increasing memory per reducer ?
On Wed, Oct 31, 2012 at 9:15 PM, Eduard Skaley <[email protected]
<mailto:[email protected]>> wrote:
Hello,
I'm getting this Error through job execution:
16:20:26 INFO [main] Job - map 100% reduce 46%
16:20:27 INFO [main] Job - map 100% reduce 51%
16:20:29 INFO [main] Job - map 100% reduce 62%
16:20:30 INFO [main] Job - map 100% reduce 64%
16:20:32 INFO [main] Job - Task Id :
attempt_1351680008718_0018_r_000006_0, Status : FAILED
Error:
org.apache.hadoop.mapreduce.task.reduce.Shuffle$ShuffleError:
error in shuffle in fetcher#2
at
org.apache.hadoop.mapreduce.task.reduce.Shuffle.run(Shuffle.java:123)
at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:371)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:152)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1332)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:147)
Caused by: java.lang.OutOfMemoryError: Java heap space
at
org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:58)
at
org.apache.hadoop.io.BoundedByteArrayOutputStream.<init>(BoundedByteArrayOutputStream.java:45)
at
org.apache.hadoop.mapreduce.task.reduce.MapOutput.<init>(MapOutput.java:97)
at
org.apache.hadoop.mapreduce.task.reduce.MergeManager.unconditionalReserve(MergeManager.java:286)
at
org.apache.hadoop.mapreduce.task.reduce.MergeManager.reserve(MergeManager.java:276)
at
org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyMapOutput(Fetcher.java:384)
at
org.apache.hadoop.mapreduce.task.reduce.Fetcher.copyFromHost(Fetcher.java:319)
at
org.apache.hadoop.mapreduce.task.reduce.Fetcher.run(Fetcher.java:179)
16:20:33 INFO [main] Job - map 100% reduce 65%
16:20:36 INFO [main] Job - map 100% reduce 67%
16:20:39 INFO [main] Job - map 100% reduce 69%
16:20:41 INFO [main] Job - map 100% reduce 70%
16:20:43 INFO [main] Job - map 100% reduce 71%
I have no clue what the issue could be for this. I googled this
issue and checked several sources of possible solutions but
nothing does fit.
I saw this jira entry which could fit:
https://issues.apache.org/jira/browse/MAPREDUCE-4655.
Here somebody recommends to increase the value for the property
dfs.datanode.max.xcievers / dfs.datanode.max.receiver.threads to
4096, but this is the value for our cluster.
http://yaseminavcular.blogspot.de/2011/04/common-hadoop-hdfs-exceptions-with.html
The issue with the to small input files doesn't fit I think,
because the map phase reads 137 files with each 130MB. Block
Size is 128MB.
The cluster uses version 2.0.0-cdh4.1.1,
581959ba23e4af85afd8db98b7687662fe9c5f20.
Thx
--
Nitin Pawar