Hi, All
I’m sure it’s ok that launching Spark standalone to a cluster, but it
can’t work used for spark-itemsimilarity.
Launching on 'local' it’s ok:
mahout spark-itemsimilarity -i /user/root/test/input/data.txt -o
/user/root/test/output -os -ma local[2] -f1 purchase -f2 view -ic 2 -fc 1 -sem
1g
but launching on a standalone cluster will be an error:
mahout spark-itemsimilarity -i /user/root/test/input/data.txt -o
/user/root/test/output -os -ma spark://Hadoop.Master:7077 -f1 purchase -f2 view
-ic 2 -fc 1 -sem 1g
------------
14/09/22 04:12:47 WARN scheduler.TaskSchedulerImpl: Initial job has not
accepted any resources; check your cluster UI to ensure that workers are
registered and have sufficient memory
14/09/22 04:12:49 INFO client.AppClient$ClientActor: Connecting to master
spark://Hadoop.Master:7077...
14/09/22 04:13:02 WARN scheduler.TaskSchedulerImpl: Initial job has not
accepted any resources; check your cluster UI to ensure that workers are
registered and have sufficient memory
14/09/22 04:13:09 INFO client.AppClient$ClientActor: Connecting to master
spark://Hadoop.Master:7077...
14/09/22 04:13:17 WARN scheduler.TaskSchedulerImpl: Initial job has not
accepted any resources; check your cluster UI to ensure that workers are
registered and have sufficient memory
14/09/22 04:13:29 ERROR cluster.SparkDeploySchedulerBackend: Application has
been killed. Reason: All masters are unresponsive! Giving up.
14/09/22 04:13:29 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose
tasks have all completed, from pool
14/09/22 04:13:29 INFO scheduler.TaskSchedulerImpl: Cancelling stage 1
14/09/22 04:13:29 INFO scheduler.DAGScheduler: Failed to run collect at
TextDelimitedReaderWriter.scala:74
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to
stage failure: All masters are unresponsive! Giving up.
at
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
at
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
at scala.Option.foreach(Option.scala:236)
at
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
at
org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
------------
Thanks.