Hi, Pat
Dataset is the same, and the data is very few for test. This is a bug?
On Sep 25, 2014, at 02:57, Pat Ferrel <[email protected]> wrote:
> Are you using different data sets on the local and cluster?
>
> Try increasing spark memory with -sem, I use -sem 6g for the epinions data
> set.
>
> The ID dictionaries are kept in-memory on each cluster machine so a large
> number of user or item IDs will need more memory.
>
>
> On Sep 24, 2014, at 9:31 AM, pol <[email protected]> wrote:
>
> Hi, All
>
> I’m sure it’s ok that launching Spark standalone to a cluster, but it
> can’t work used for spark-itemsimilarity.
>
> Launching on 'local' it’s ok:
> mahout spark-itemsimilarity -i /user/root/test/input/data.txt -o
> /user/root/test/output -os -ma local[2] -f1 purchase -f2 view -ic 2 -fc 1
> -sem 1g
>
> but launching on a standalone cluster will be an error:
> mahout spark-itemsimilarity -i /user/root/test/input/data.txt -o
> /user/root/test/output -os -ma spark://Hadoop.Master:7077 -f1 purchase -f2
> view -ic 2 -fc 1 -sem 1g
> ------------
> 14/09/22 04:12:47 WARN scheduler.TaskSchedulerImpl: Initial job has not
> accepted any resources; check your cluster UI to ensure that workers are
> registered and have sufficient memory
> 14/09/22 04:12:49 INFO client.AppClient$ClientActor: Connecting to master
> spark://Hadoop.Master:7077...
> 14/09/22 04:13:02 WARN scheduler.TaskSchedulerImpl: Initial job has not
> accepted any resources; check your cluster UI to ensure that workers are
> registered and have sufficient memory
> 14/09/22 04:13:09 INFO client.AppClient$ClientActor: Connecting to master
> spark://Hadoop.Master:7077...
> 14/09/22 04:13:17 WARN scheduler.TaskSchedulerImpl: Initial job has not
> accepted any resources; check your cluster UI to ensure that workers are
> registered and have sufficient memory
> 14/09/22 04:13:29 ERROR cluster.SparkDeploySchedulerBackend: Application has
> been killed. Reason: All masters are unresponsive! Giving up.
> 14/09/22 04:13:29 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0,
> whose tasks have all completed, from pool
> 14/09/22 04:13:29 INFO scheduler.TaskSchedulerImpl: Cancelling stage 1
> 14/09/22 04:13:29 INFO scheduler.DAGScheduler: Failed to run collect at
> TextDelimitedReaderWriter.scala:74
> Exception in thread "main" org.apache.spark.SparkException: Job aborted due
> to stage failure: All masters are unresponsive! Giving up.
> at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
> at scala.Option.foreach(Option.scala:236)
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
> at akka.actor.ActorCell.invoke(ActorCell.scala:456)
> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
> at akka.dispatch.Mailbox.run(Mailbox.scala:219)
> at
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
> at
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
> at
> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
> at
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> ------------
>
> Thanks.
>
>