You could explicitly do

pio train -- --master spark://localhost:7077 --driver-memory 16G
--executor-memory 24G

and change the spark master url and the memories configuration. And see if
that works.

Thanks

On Wed, Jun 7, 2017 at 1:55 PM, Bruno LEBON <[email protected]> wrote:

> Hi,
>
> Using UR with PIO 0.10 I am trying to train my dataset. In return I get
> the following error:
>
> *...*
> *[INFO] [DataSource] Received events List(facet, view, search)*
> *[INFO] [DataSource] Number of events List(5, 4, 6)*
> *[INFO] [Engine$] org.template.TrainingData does not support data sanity
> check. Skipping check.*
> *[INFO] [Engine$] org.template.PreparedData does not support data sanity
> check. Skipping check.*
> *[INFO] [URAlgorithm] Actions read now creating correlators*
> *[WARN] [TaskSetManager] Lost task 0.0 in stage 56.0 (TID 50,
> ip-172-31-40-139.eu-west-1.compute.internal):
> java.lang.NegativeArraySizeException*
> *        at org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
> *        at
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
> *        at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
> *        at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
> *        at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
> *        at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
> *        at java.lang.Thread.run(Thread.java:748)*
>
> *[ERROR] [TaskSetManager] Task 0 in stage 56.0 failed 4 times; aborting
> job*
> *Exception in thread "main" org.apache.spark.SparkException: Job aborted
> due to stage failure: Task 0 in stage 56.0 failed 4 times, most recent
> failure: Lost task 0.3 in stage 56.0 (TID 56,
> ip-172-1-1-1.eu-west-1.compute.internal):
> java.lang.NegativeArraySizeException*
> *        at org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
> *        at
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
> *        at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
> *        at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
> *        at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
> *        at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
> *        at java.lang.Thread.run(Thread.java:748)*
>
> *Driver stacktrace:*
> *        at org.apache.spark.scheduler.DAGScheduler.org
> <http://org.apache.spark.scheduler.DAGScheduler.org>$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)*
> *        at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)*
> *        at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)*
> *        at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)*
> *        at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)*
> *        at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)*
> *        at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)*
> *        at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)*
> *        at scala.Option.foreach(Option.scala:236)*
> *        at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)*
> *        at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)*
> *        at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)*
> *        at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)*
> *        at
> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)*
> *        at
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)*
> *        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)*
> *        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)*
> *        at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)*
> *        at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)*
> *        at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)*
> *        at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$.numNonZeroElementsPerColumn(SparkEngine.scala:81)*
> *        at
> org.apache.mahout.math.drm.CheckpointedOps.numNonZeroElementsPerColumn(CheckpointedOps.scala:36)*
> *        at org.apache.mahout.math.cf
> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.sampleDownAndBinarize(SimilarityAnalysis.scala:397)*
> *        at org.apache.mahout.math.cf
> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$$anonfun$cooccurrences$1.apply(SimilarityAnalysis.scala:101)*
> *        at org.apache.mahout.math.cf
> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$$anonfun$cooccurrences$1.apply(SimilarityAnalysis.scala:95)*
> *        at
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)*
> *        at
> scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)*
> *        at org.apache.mahout.math.cf
> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.cooccurrences(SimilarityAnalysis.scala:95)*
> *        at org.apache.mahout.math.cf
> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.cooccurrencesIDSs(SimilarityAnalysis.scala:147)*
> *        at org.template.URAlgorithm.calcAll(URAlgorithm.scala:280)*
> *        at org.template.URAlgorithm.train(URAlgorithm.scala:251)*
> *        at org.template.URAlgorithm.train(URAlgorithm.scala:169)*
> *        at
> org.apache.predictionio.controller.P2LAlgorithm.trainBase(P2LAlgorithm.scala:49)*
> *        at
> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)*
> *        at
> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)*
> *        at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)*
> *        at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)*
> *        at scala.collection.immutable.List.foreach(List.scala:318)*
> *        at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)*
> *        at
> scala.collection.AbstractTraversable.map(Traversable.scala:105)*
> *        at
> org.apache.predictionio.controller.Engine$.train(Engine.scala:692)*
> *        at
> org.apache.predictionio.controller.Engine.train(Engine.scala:177)*
> *        at
> org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:67)*
> *        at
> org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:250)*
> *        at
> org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)*
> *        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)*
> *        at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)*
> *        at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)*
> *        at java.lang.reflect.Method.invoke(Method.java:498)*
> *        at
> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)*
> *        at
> org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)*
> *        at
> org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)*
> *        at
> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)*
> *        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)*
> *Caused by: java.lang.NegativeArraySizeException*
> *        at org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
> *        at
> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
> *        at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
> *        at
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
> *        at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
> *        at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
> *        at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
> *        at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
> *        at java.lang.Thread.run(Thread.java:748)*
>
>
> Now usually this message NegativeArraySizeException tells me that one of
> the events defined in engine.json doesn't exist in my dataset. However this
> is not the case here, my three events are present in my dataset. Here the
> proves:
> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-
> 4b6f-a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=facet
>
> [{"eventId":"AYDE4TYMjU2dFGWVAYyUYwAAAVx5_afdpSyQHw_eNT0","event":"facet","entityType":"user","entityId":"92ec6a38-9fee-4c99-92a5-46677ad9ca48","targetEntityType":"item","targetEntityId":"alfa-romeo-marque","properties":{},"eventTime":"2017-06-05T20:41:25.725Z","creationTime":"2017-06-05T20:41:25.725Z"}]
>
> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-4b6f-a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=view
>
> [{"eventId":"IjuMNR7h40l_sylo-uqEsAAAAVxoIcPqnumP2B_qWAk","event":"view","entityType":"user","entityId":"bbc5bd25-b1ac-41e0-b771-43fe65a8827e","targetEntityType":"item","targetEntityId":"citroen-marque","properties":{},"eventTime":"2017-06-02T09:27:42.314Z","creationTime":"2017-06-02T09:27:42.314Z"}]
>
> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-4b6f-a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=search
>
> [{"eventId":"AI6NF05NJa3fP2bRpKUxAwAAAVxymnYYjm6nNt3TsGY","event":"search","entityType":"user","entityId":"b2c77901-0824-4583-9999-3cd56c1f34c9","targetEntityType":"item","targetEntityId":"peugeot-marque","properties":{},"eventTime":"2017-06-04T10:15:44.408Z","creationTime":"2017-06-04T10:15:44.408Z"}]
>
>
> I selected only one event per type but there are more.
>
>
> If I keep only the event types *facet *and *search*, then it works, the train 
> succeeds and I have my model. However as soon as I add the event type *view*, 
> it fails. I tried putting *view *as a primary event and it doesnt change 
> anything. Not sure why it would change anything but I tried anyway.
>
>
> Here is my engine.json:
>
> *{
>   "comment":"",
>   "id": "car",
>   "description": "settings",
>   "engineFactory": "org.template.RecommendationEngine",
>   "datasource": {
>     "params" : {
>       "name": "sample-handmade-data.txt",
>       "appName": "piourcar",
>       "eventNames": ["facet","view","search"]
>     }
>   },
>   "sparkConf": {
>     "spark.serializer": "org.apache.spark.serializer.KryoSerializer",
>     "spark.kryo.registrator": "org.apache.mahout.sparkbindings.io 
> <http://sparkbindings.io>.MahoutKryoRegistrator",
>     "spark.kryo.referenceTracking": "false",
>     "spark.kryoserializer.buffer": "300m",
>     "es.index.auto.create": "true",
>     "es.nodes":"espionode1:9200,espionode2:9200,espionode3:9200"
>   },
> "algorithms": [
>     {
>       "name": "ur",
>       "params": {
>         "appName": "piourcar",
>         "indexName": "urindex_car",
>         "typeName": "items",
>         "eventNames": ["facet","view","search"],
>         "blacklistEvents": [],
>         "maxEventsPerEventType": 50000,
>         "maxCorrelatorsPerEventType": 100,
>         "maxQueryEvents": 10,
>         "num": 5,
>         "userBias": 2,
>         "returnSelf": true
>       }
>     }
>   ]
> }*
>
> Thanks in advance for your help, regards,
> Bruno
>
>
>
>
>
>

Reply via email to